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ABSTRACT

Automating assembly operations effectively increase efficiency
while decreasing the need for humans to perform ergonomically
challenging tasks. However, full automation of these tasks is still
a work in progress. Leveraging the complementary strengths of
humans and robots offers a solution. Humans can handle tasks
requiring dexterity by working in a team, while robots under-
take routine, supportive roles. However, contingency situations
created by task execution failures occur more frequently in high-
mix applications because of the high variability in the types of
tasks. Work cells that enable collaboration between humans and
robots are not likely to be economically viable unless contin-
gency situations are detected and efficiently managed. In such
situations, additional contingency tasks must be executed to re-
cover from the contingency, and productively utilizing human
agents can help the work cell quickly recover from contingen-
cies. This paper presents a framework for automatically assign-
ing and scheduling tasks to humans and robots to complete mul-
tiple assemblies while managing the computational complexity
of generating optimal task plans. Additionally, we present meth-
ods to generate recovery task plans that effectively resolve those
contingencies automatically. In our case study, we present an ap-
proach to graphically determine the number of tasks and products
to consider with limited computing time.

1 INTRODUCTION

The automation of assembly operations has garnered consider-
able attention to enhance human productivity and alleviate the
need for humans to engage in ergonomically demanding tasks.
However, the inherent complexity of many assembly operations
precludes their full automation. Recognizing that humans and
robots possess complementary strengths, one viable approach to
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FIGURE 1: Real-world examples of factories that utilize mobile
fixtures from the industry. On the left, it shows the arrival’s
implementation of mobile fixtures in assembly operations, and
on the right, it shows Tesla’s approach. Both are featured in
wired.co.uk.

advancing automation in assembly tasks involves the collabora-
tion of human and robot teams. In such an arrangement, humans
would handle tasks that demand a high degree of dexterity, while
robots would be assigned to execute more routine tasks. Tradi-
tional robotic manipulators did not allow humans and robots to
collaborate because of safety considerations. Robots had to be
enclosed in cages to separate them from humans. This constraint
severely restricted the deployment of human-robot teams in man-
ufacturing applications. In most cases, robots could only perform
simple tasks such as insertion tasks or pick and place operations,
which meant humans had to perform complex assembly oper-
ations without assistance from robots. Several advances have
been made in robotic manipulators, making them safer for hu-
mans. These advances enable the development of collaborative
work cells, where humans and robots can work nearby. However,
to enable efficient human-robot collaboration, tasks must be ap-
propriately allocated and scheduled in the human-robot team to
maintain teaming efficiency.

Robots are currently used for simple assembly tasks in mass-
production applications. These tasks are carried out with the help



of extensive testing and custom fixtures, which eliminates un-
certainty and prevents the possibility of task execution failures.
However, this strategy cannot be utilized in low-volume applica-
tions due to high variability in task types, leading to contingency
situations and task execution failures.

In contingency situations, recovery tasks must be generated
effectively, and recovery tasks should be quickly and dynami-
cally recomputed to the current schedule to minimize assembly
cell shutdown time while managing failures and optimizing task
completion. The efficient utilization of human agents can aid
in quickly recovering the work cell from such situations. These
plans may result in increased complexity and significant devia-
tion from the original schedule, requiring a new schedule to be
computed. However, limited computational resources and a fixed
computation time budget may not allow the generation of an op-
timal solution. Therefore, we present a method to determine the
optimal number of HTN to consider with limited computational
resources.

The contribution of our paper includes:

1. A framework for automatically assigning and scheduling
tasks for humans and robots to complete multiple product
assemblies

2. Methods to generate recovery task plans that seek human
help automatically.

3. A management strategy to help practitioners determine near-
optimal solutions under computation constraints.

We use an all-terrain vehicle assembly case study to demon-
strate the capabilities of our proposed task allocation framework.

2 RELATED WORK

Human-Robot teams in High-mix Assembly: Traditionally,
robotic cells deployed for assembly and manufacturing opera-
tions were confined within enclosures designed to exclude hu-
mans from the robot’s workspace [1,2,3]. These cells were tai-
lored for producing a single product in high volumes, rendering
them ill-suited for settings with high-mix and low-volume pro-
duction [4]. However, the growing demand for customization has
prompted a shift towards deploying robots alongside humans to
address the challenges of the variability in parts associated with
high-mix assemblies.

Human-robot collaboration has gained significant attention
in manufacturing over the past decade, mainly due to the ad-
vancements in collaborative robot technology [5, 6]. Neverthe-
less, much of the previous research has focused on scenarios in-
volving a single robot collaborating with a single human [7, 8].
Work done in [9, 10, 11] demonstrates the key technological ele-
ments required for a human-robot collaborative cell. In our prior
work [12], we demonstrated the successful operation of a multi-
robot cell with a single human operator, handling complex as-
sembly tasks. Motivated by this work, we extend our previous

framework to encompass multiple cells, each equipped with mul-
tiple robots collaborating seamlessly with several human opera-
tors. Notably, our focus shifts to cells manufacturing multiple
types of products, departing from the conventional approach of
assembling a single product.

Task Planning and Scheduling: Task assignment and schedul-
ing for human-robot teams have been subjects of extensive re-
search [13,14,15,16,17,18]. A comprehensive overview of ap-
proaches to the multi-robot task planning problem is presented
in [19]. Recent studies have increasingly embraced the hierar-
chical planning approach for task planning and scheduling, given
its capability to capture sequential and parallel task relationships
across all levels of abstraction [20]. Formulations based on Hi-
erarchical Task Networks (HTNs) coupled with mixed-integer
programming-based solvers [21] have gained traction, facilitated
by recent advancements in computational resources [22, 23].
However, existing research has predominantly addressed more
straightforward problems involving a single cell with multiple
robots. In our work, we extend the HTN framework to accom-
modate multiple cells engaged in producing diverse parts. Ad-
ditionally, we propose a methodology to manage the intricacies
arising from the introduction of multiple products into the plan-
ning problem.

Contingency-aware Planning: During the online execution of
plans in human-robot teams, failures can arise from uncertain-
ties in various factors, such as sensors, modeling errors, and
robot motion errors [24,25,26]. Effectively addressing contin-
gencies becomes important for ensuring the successful execu-
tion of tasks. In the context of the proposed problem involving
multi-robot and multi-human cells, the sources of failures can
be complex, and managing them can pose computational chal-
lenges. Previous research has primarily focused on modeling
contingencies and devising corrective plans to proactively ad-
dress them [27,28]. However, in complex scenarios, predicting
and modeling contingencies in advance may prove infeasible. An
alternative approach involves repairing plans in real-time as fail-
ures occur [29]. This approach has garnered significant interest
due to its capacity to handle contingencies at low-level task ex-
ecution and high-level planning. This is particularly relevant in
multi-robot team scenarios, where the complexity of interactions
and dependencies adds another layer of intricacy to the contin-
gency management process. As such, the adaptability of this
approach becomes crucial for ensuring the resilience and effec-
tiveness of human-robot teams operating in a high-mix setting to
recover from failures.

3 BACKGROUND AND TERMINOLOGY

Assembly cell refers to the factory area where agents perform
the assembly. We assume that multiple stations in the assembly
cell will be used to perform assembly operations. Assemblies-
in-progress will move from station to station using a mobile plat-



FIGURE 2: Top view of the ATV assembly cell.

form (called a mobile fixture). Fig. 1 shows an example of a mo-
bile fixture used in industries. Several new factories are now uti-
lizing this concept to build electric vehicles, satellites, and other
applications. Humans and robots perform one or more assem-
bly tasks in each station. There are three types of stations in the
cell. The first type of station is the robot-only station. These
stations will be used to perform routine assembly tasks. The sec-
ond type of station will be a collaborative station. These stations
will support collaboration among humans and robots. These sta-
tions will be used to perform challenging tasks, and humans will
handle challenging aspects. For example, if a highly compliant
part needs to be assembled, the human will perform the insertion
task, and the robot will perform the fastening task. The third type
of station will be a human-only station. This station will primar-
ily perform rework and disassembly tasks that we need during
unsuccessful assembly operations.

An HTN will describe the product assembly operations,
specifying the tasks needed to realize the assembly and the prece-
dence and mutex constraints among these tasks. Each task has a
task type that determines what operation is required to complete
it. Examples of task types include fastening, insertion, etc.

The cell consists of N stations, each capable of performing
one or more task types. The objective is to finish assembling M
products in the shortest possible time after the operation ends.
Products being produced need not be identical. Each product is
represented by its own HTN and, therefore, can include appro-
priate customization. An example of such a factory is shown in
Fig. 2

The assembly cell has the following attributes:

1. Each station has one or more agents available to work on
the task. For example, if two robots are needed to perform
an assembly task, the station will have two robots. If a sta-
tion serves a task type that requires human expertise, such as
dexterous manipulation of soft materials or wires, then that
station will have a human agent.

2. Each station can have the following states: (1) idle, (2) busy,
and (3) unavailable. The idle state means that the station

is available to perform a task. The busy state means that
the station is currently executing a task. The unavailable
state means that the station cannot be assigned a task. If a
robot breaks down in a station, then the state of that station
becomes unavailable.

3. The overall assembly cell has one more human agent. Hu-
mans play two roles. Either they work on their assigned sta-
tion for regular operation or visit another station to resolve a
contingency.

4. We assume that human agents available in the cell can han-
dle every type of contingency that can occur in the cell.

5. Each station has input storage areas. Parts needed for tasks
are delivered to the input storage area of the station using
mobile robots. Once the assembly operation is completed
in a station, the mobile fixture carrying the assembly-in-
progress moves to the next station.

6. If a difficulty is encountered during the task execution and
the station cannot complete the task, it invokes the contin-
gency management system. Contingencies can either be re-
solved at the station or the assembly-in-progress moves to
the specialized contingency handling station.

7. There is no fixed order for performing the assembly tasks.
Tasks can be performed in any order consistent with the
precedence constraints defined in HTN.

The assembly cell operates in the following manner:

. A central cell planner assigns tasks to agents in the cell.

. Parts are delivered to input storage areas of different stations

in the cell by agents external to the cell.

3. Each agent with assigned tasks checks preconditions before
starting its assigned tasks. These preconditions include the
availability of parts in the input storage area and the com-
pletion of other tasks that serve as precursors to this task. If
preconditions for task execution at a station are met, then the
task execution commences immediately.

4. The cell uses sensors to monitor task execution. Task execu-
tion monitoring has three phases: (1) precondition checking,
(2) monitoring of task-in-progress, and (3) post-completion
verification. If a station successfully completes the task, the
mobile fixture holding the assembly-in-progress moves to
the next station.

5. If a contingency is detected, then an alert is issued, and the

central planner updates the plan to handle the contingency.

N —

Table 1 shows a few representative examples of a task as-
signed to a robotic station that fails and identifies a recovery
action. When a station is unable to perform the task assigned
to it, then a contingency event occurs. To deal with contingen-
cies, the following modifications may need to be made to the task
network. (1) Assign the contingency recovery tasks to possible
agents that can execute the tasks. (2) Add an “undo” task to the
network if a part that invoked contingency requires performing



TABLE 1: The table outlines various types of contingencies, de-
tails their respective impacts on HTN resource and task models,
and proposes corresponding recovery actions.

Source of Failure

Impact on Resource and Task
Network and Suggested
Recovery Action

Cannot detect parts
due to sensor failure

Change station state to unavailable
and insert a task to repair the sensor.

Wrong or defective
part is delivered to
the input storage

Insert a task to move the defective
part to the buffer area. The task can
be attempted with a different part
from the input again if input storage
is not empty.

Parts on the input
buffer are out of
reach of the robot in
the station

Insert a task to move the part on the
input storage. This task type will
be set to “difficult-move” and there-
fore it will need to be assigned to
the human.

No part is available
on input storage

Insert a task to fetch part. This task
type will be performed by an exter-
nal agent.

Grasping failure

If this is the first failure, then at-
tempt the task one more time. If this
is the second failure, then make the
station unavailable and insert a re-
pair task. The repair task will need
to be performed by a human.

Execution failure
with no damage to
the assembly

Insert a “redo” task to attempt the
task again. If the failure occurs a
second time, then the task needs to
be performed by a human.

Execution failure
with damage to the
assembly

Insert a repair task and make the
station unavailable. The repair task
will need to be performed by the hu-
man.

Unable to place the
work-in-progress on
output storage

Make the station unavailable and
send an alert to the human.

Unexpected human
presence in a station

Make the station unavailable and
send an alert to the human.
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FIGURE 3: Software architecture of the robotic cell execution,
task scheduling, and contingency management.

a task that reverses the effect of a previously completed task to
gain access. (3) Add a “redo” task to the network that attempts
the task again and counts the number of times the task has been
attempted. (4) Add a “repair” task that requires repairing a re-
source in the cell. Consequently, this approach often necessitates
substantial modifications to the HTN, which in turn can signifi-
cantly escalate the complexity of the HTN.

4 PROBLEM FORMULATION

In our framework, multiple products will be assembled in the fac-
tory. Thus, managing the assembly process effectively requires
a task scheduling system that accommodates multiple products,
enabling the task schedule to accommodate as many tasks as
possible. In this paper, we present an extension of the single-
product HTN to a multi-product HTN, facilitating the simulta-
neous scheduling of tasks associated with multiple products to
optimize task scheduling.

We employ an HTN framework that recognizes sequential,
independent, and parallel task interdependencies, as elaborated
in [30]. The task hierarchy originates with a root node and spans
to sub-tasks that comprise the entire set of tasks. Atomic task
nodes 7; denote the fundamental tasks within the manufacturing
workflow. Intermediate tasks, T, reside between atomic and
root nodes, dictating the constraints for executing child tasks.
The sequential node enforces an ordering constraint for child
tasks in line with the sequential nature of assembly operations.



The independent node allows tasks to be executed in any se-
quence with no overlap, while the parallel node permits con-
current task execution by various agents. To transition from
a single-product HTN to a multi-product HTN, we introduce
a multi-product root node that amalgamates duplicates of the
HTN for individual products. This integration employs a paral-
lel constraint, ensuring agents can progress to subsequent prod-
ucts when unassigned. To prioritize tasks of the preceding prod-
uct over subsequent assemblies, we implement task constraints
among {HTN;,HTN,,HTNs...}.

We have a resource model that monitors the status of compo-
nents and agents within the system. Each task requires specific
agents and components, the availability of which is crucial for
task execution. Our model considers any changes in the avail-
ability of these resources or any operational disruptions that may
occur during the process, treating such events as contingencies.
For example, if there is a malfunction in the robot’s control sys-
tem or the robotic gripper, or if a part is not present at the station,
the system flags these issues to the monitoring unit. This prompt
detection allows immediate replanning to incorporate recovery
tasks and adapt to the changed circumstances, ensuring minimal
disruption to the production process.

Let H denote HTN that encapsulates the assembly con-
straints for tasks for assembling a single manufacturing product.
Alongside, R represents its associated resource model, which
captures the agents and components’ real-time availability and
status required to execute the tasks in H. Let O(H,R) be a task
planner that identifies a sequence S of task-to-agent allocations
A; +» 7;, associating each task 7; within H with an agent A; within
R. The result is a schedule with makespan ¢. In situations where
contingencies, F', demand system adjustments, such as modifica-
tions to H or the status of R, complications may ensue. These
could stem from the availability of an agent, a faulty component,
or an error in task execution. A contingency recovery method,
«, is vital to reestablishing normal operations. The recovery task
set Ty, within «, is designed to recalibrate H in light of R and
7; changes. When implemented, o¢ modifies the original (H) to
yield an updated (H’), a new resource model (R'), and a revised
task set (T, Tg) as part of 7’. A new planner O'(H,'R’) then pro-
duces an updated task sequence with a new makespan .
Problem Statement: In environments where robots assemble
multiple products, it is crucial to minimize the idle time of agents
by implementing a scheduling system that optimizes for the
shortest possible makespan within a manageable computational
timeframe. However, this presents a challenge, especially when
contingencies expand the number of nodes and decision variables
in the modified H’, thereby increasing computational complexity.
Our approach aims to address the intricacies of computational
management within the HTN framework and ascertain the ideal
number of products to consider concurrently in the scheduling
procedure. Furthermore, we propose strategies to manage in-
stances where contingency recovery protocols significantly com-

pound the complexity of the HTN.

Overview of Approach: To generate a task schedule from the
set of HTNs at hand, we translate these HTNs into a constraint
programming model, as detailed in section 5. Under normal op-
erations, should any contingencies arise, we apply modifications
to the HTN using the procedures outlined in section 6. When
handling an HTN associated with multiple products, we may en-
counter a significant increase in complexity. To address this, we
have developed a management strategy that allows us to derive
near-optimal solutions with limited computational resources and
time. This strategy is discussed in section 7. Section 8 presents
a case study that shows how our approach can be applied to the
All-Terrain Vehicle (ATV) assembly problem.

5 CONVERTING HTNs INTO A CONSTRAINT PRO-

GRAMMING MODEL
Constraint programming is an exact method for solving schedul-
ing problems. Recent advancements have shown that these meth-
ods can quickly find high-quality solutions for large-scale com-
binatorial optimization problems and further refine them. This
section presents a constraint programming model derived from a
flexible job shop problem formulation [31, 32, 33, 34, 35]. This
model is used to find a solution for the decision variables that
determine which agents should perform specific tasks and when
these tasks should start while considering the HTN constraints.

First, we must encode the HTN into the CP Model. The
HTN is a way of grouping tasks in a logical and natural manner
that is easy for humans to understand. However, to encode the
HTN into the constraint program, we must break down the HTN
into lower-level precedence and independent mutex constraints
for tasks. This is done by traversing the sub-task nodes in the
HTN and generating a set of precedence and mutex task tuples
for the atomic tasks encompassed by each sub-task.

We define the “children(.)” function, which returns the di-
rect child nodes of a given sub-task node, and the “atomicChil-
dren(.)” function, which returns the subset of leaf nodes (atomic
tasks) that are a descendant of the node.

We illustrate the generation of lower-level precedence task
pairs for sequential nodes in the following way: Let’s assume
we are generating lower-level constraints for node 7y, which is
a sequential node. We first identify its direct children; for ex-
ample {74, T, Tc } + children(7y,;). These direct children nodes
may also be sub-task nodes that group atomic tasks. We sub-
sequently obtain the set of atomic tasks grouped under each
child node, A, B,C « atomicChildren(14, T, 7). In this exam-
ple, the sequential task constraint would then specify that the set
of atomic tasks A = {7j,...7;} must precede the set of atomic
tasks B = {7;...7;}. The set of task precedence pairs would be
the following union of cartesian products {(A x B)U (B x C)},
which would then augment the existing set of task pairs P.

Likewise, if 7y, represents an independent node, the mutex



task constraint would be that the set of atomic tasks for A,B,C
cannot overlap. The set of task mutex tuples would be the carte-
sian product of atomic task sets {A x B x C}, augmenting the ex-
isting set of task mutex tuples. We repeat this process for every
sequential and independent sub-task node in the HTN. Parallel
nodes indicate no constraints for the child nodes.

We now present the CP model, the parameters, decision vari-
ables, and functions we use to create a schedule. It is worth
noting that there is no standard way of presenting CP models.
Therefore, we have adopted a notation similar to prior work with
function names and decision variable types matching the naming
conventions used in our OR-Tools CP-SAT solver implementa-
tion. It is important to mention that other solvers may use the
same functions and decision variables but with different naming
conventions. Thus, our formulation is a general constraint pro-
gramming model.

Sets:

T: Set of tasks

N: Set of agents

Ti: Set of tasks that can be completed by agent k

N;: Set of agents that can process task i

P: Set of task precedence pairs (i, j) specifying 7; must pre-
cede T;

M: Set of task mutex tuples (i, j,1,...) specifying 7;, 7Tj, 7, ...
cannot overlap with each other.

Parameters:
pi - Nominal processing time of task i executed by agent k
Decision and Auxiliary Variables

X; x: Boolean variable, true if task i is processed by agent k,
otherwise false

si: Integer start time of task i

pi: Integer duration time of task i

e;: Integer end time of task i

sir: Integer start time of task i being completed by agent k
e;r- Integer end time of task i being completed by agent k
0i(si, pi,ei): Specifies interval variable for task i, which
is a constraint that enforces s; + p; = e¢; and a sequenc-
ing variable used in other scheduling constraints such as
NoOverlap(.)

0ik (Sik, Diks €ik, Xir ). Specifies an optional interval variable
for task i executed by agent k that enforces s;. + pix = €.
If x; is true, then the interval constraint is enforced; if
it is false, then the interval constraint is not enforced, and
scheduling constraints will ignore the interval variable

Functions

NoOverlap({o;,0j,...}): The no overlap constraint ensures
that the inputted interval variables do not overlap in time.

Minimize t @))]

subject to
sj > e, V(i,j)eP (2)
NoOverlap({o;,0;,01}), V@i, j,l)eM 3)
t =Max({e]i € T}) 4)
NoOverlap({ox|i € Tx}), VkeN )
Y xix=1, VierT (6)

kEN;

Si = Sik, Pi = Dik, €i = €ik VieTNkeN, ifx,, =1 (7)

The objective of this constraint program is to determine task
assignments and task start times that minimize the time it takes
to complete all tasks, which is the makespan represented by vari-
able t. For all pairs of tasks with a sequential ordering constraint,
Equation 2 states that task j must start after task i. For all pairs
of tasks with an independent constraint, Equation 3 specifies that
the intervals of task i and task j must not overlap. Equation 4
defines that the makespan variable ¢ will be equal to the end time
of the last task that is completed. Equation 5 requires that the
intervals of tasks assigned to an agent must not overlap. This
ensures each agent can execute at most one task for any given
instance. Equation 6 specifies that a task can only be assigned
to one agent. Lastly, Equation 7 states that if task i is assigned
to agent k, then the start time, duration, and end time of the task
will be equal to the corresponding start time, duration, and end
time of the task-agent pair.

6 HANDLING CONTINGENCIES

Fig. 4 illustrates incorporating the recovery process within the
revised HTN structure. Before the contingency plan ¢ is incor-
porated, the contingency manager splits the parent node of the
task affected by the contingency, referred to as T, into two sepa-
rate functions: (1) the contingency operation, which includes the
node of the failed task and its associated recovery tasks, and (2)
the regular operation, which contains the rest of the tasks in T,y,.
Subsequently, the failed task and its relevant o tasks are linked to
the new 7. This enables the scheduler to integrate the recovery
and affected tasks into the scheduling process.

If a defect or incorrect assembly is detected in the en-
gine after it has been mounted onto the chassis, it necessi-
tates a disassembly for replacement or reorientation. This de-
fect/misplacement could be detected at any point, such as dur-
ing the placement of the lower cover on the chassis, as illus-
trated in Fig. 5. To facilitate the engine’s re-assembly, the
procedure of fastening the engine and any tasks that sequen-
tially follow the engine assembly, like the lower cover assem-
blies, must be undone. The contingency manager examines the
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FIGURE 4: In contingency, recovery procedures get added to
HTN to form new HTN with increased nodes and decision vari-
ables.

completed tasks to determine those sequentially linked within
the HTN. This process entails inverting the sequence of com-
pleted operations to delineate the required disassembly steps.
For instance, if the engine is affixed to the main chassis using
screws, the task “fasten_engine_to_chassis” would be altered to
“undo_fasten_engine_to_chassis.” Such a transformation allows
the production cell to backtrack on completed tasks, making the
engine accessible for remedial actions. These identified disas-
sembly steps are then integrated into the contingency plan o.
The introduction of disassembly and the necessity to redo certain
tasks results in an increased number of nodes within the HTN’s
structure, reflecting the additional complexity brought about by
including reverse operations.

Addressing just one contingency event can introduce 4 to 50
additional tasks. Our system demonstrates robustness in scenar-
ios involving multiple contingencies, denoted as F;. Our con-
straint solver incorporates the tasks required for recovery from
these multiple contingencies as decision variables, enabling it
to generate optimal outcomes. For example, if one contingency
would cause a more significant delay in the overall timeline than
another, our solver prioritizes resolving one before the other.
However, dealing with several concurrent contingencies presents
a significant challenge due to the surge in computational com-
plexity, which greatly increases the difficulty of maintaining an
efficient and responsive assembly process.

FIGURE 5: The situation shows the case of an engine mounted
incorrectly, which was discovered while assembling the lower
cover. The robot detects the contingency when it struggles to
place a lower cover due to a tolerance issue caused by the incor-
rect placement of the engine.

FIGURE 6: Model of the ATV assembly used for our case study
in Section 8.

7 MANAGING COMPUTATIONAL COMPLEXITY
The time needed to compute optimal task allocations and
scheduling increases exponentially with the size of HTN. In-
stead, we want to find a high-quality solution given a fixed com-
putation budget. Therefore, we cannot consider scheduling tasks
over a very long time horizon. We need to determine how much
computation budget to provide as a function of many products to
consider in the time horizon when performing task scheduling.
We first study how using limited computing time affects the
solution quality. We use three example HTNs of varying com-
plexities, with differences in the number of nodes and decision
variables. In Table 2, we present an analysis of the suboptimal-
ity factor, calculated as the ratio of a sub-optimal solution to a
pseudo-optimal solution. We give the solver a large computation
budget to obtain this pseudo-optimal solution, specifically over
7000 seconds. This extended runtime allows us to approximate



the optimal solution very closely, providing a benchmark against
which the efficiency of quickly computed sub-optimal solutions
can be measured. We present results for three different computa-
tion times. The table shows that with an increase in the number
of products, there is a rise in the complexity of the HTN.

Our findings indicate that the number of decision variables is
crucial in characterizing the HTN’s complexity. This complexity
is proportional to the increase of the makespan compared to the
optimal solution when the available computation time is limited.
This study suggests that decision variable management becomes
a pivotal factor in mitigating the effects of and maintaining effi-
ciency in multi-product assembly systems.

We investigate how considering different number of prod-
ucts in our look-ahead with limited computation time affects the
sub-optimality factor. Figure 7 shows how different levels of
product look-ahead affect the solution quality. When the number
of products we look ahead is small, we can solve the problem
optimally for the given level of product look-ahead. However,
the solution does not consider all the possible tasks in complete
production, and resources are not fully utilized. Therefore, sub-
optimality arises from the resource utilization point of view. As
shown in Fig. 7, an optimal level of look-ahead makes the best
compromise between the complexity of the problem solved and
inherent resource utilization inefficiency when using partial look-
ahead.

To tackle the challenge of sub-optimality with constrained
computation time, we put forward a method to visually analyze
the influence of sub-optimality on the overall makespan for vary-
ing numbers of products. By referring to Fig. 7, we can find a
strategy that employs an ‘optimal look-ahead’ in the number of
products. This look-ahead strategy is designed to optimize the
makespan within the bounds of the available solving time.

The concept of ‘optimal look-ahead’ involves scheduling
over a specified number of future products to mitigate potential
inefficiencies. This look-ahead approach allows us to strategi-
cally align tasks and resources for upcoming products. Doing so
can reduce the reactive adjustments often required when schedul-
ing without a look-ahead, which may lead to a greater makespan.
We aim to select the most effective number of products to include
in the scheduling horizon at any given time, aiming to maintain
the makespan as close as possible to the optimal solution.

In Fig. 7, we present an analysis of three examples. This
involves solving for eight products over an extended duration
to reach a pseudo-optimal solution against solving for one to
five products within a 120-second computation time constraint,
thereby producing a sub-optimal solution. This visual represen-
tation enables us to analyze the varying degrees of effectiveness
of different ‘look-ahead’ numbers for each HTN. We can also ob-
serve that for each specific HTN, a distinct number of products
represent the best look-ahead count. This number is the point at
which means the compromise between the sub-optimality caused
by computation time constraint and sub-optimality caused by

limited look-ahead.

The analysis described above is crucial for decision-makers
to identify the optimal scheduling strategy that maximizes ef-
ficiency within the time constraints imposed on the scheduling
process. We recommend users identify the computing time avail-
able for task assignment and scheduling. They should then con-
duct a parametric study to identify the product look ahead that
they can use to minimize the sub-optimality factor. We used lim-
ited computational resources to solve the problem. Real-life as-
sembly problems can be very complex; therefore, users should
consider using sufficiently high-powered computers to ensure
that the problem can be solved without incurring significant sub-
optimality factor.

When contingencies occur, the look-ahead strategy in
scheduling may need adjustment due to the resultant increase in
decision variables. For example, HTNs shown in Table 2 with
initial decision variable counts ranging from 200 to 1800, con-
tingency handling procedures might introduce an additional 7 to
86 decision variables to handle and recover from the contingen-
cies. Consequently, the recovery procedures can influence the
number of decision variables. The available computational time
during the contingency event may also be limited.

We conduct computational experiments to determine the op-
timal ‘look-ahead’ for HTNs in the presence of contingencies.
This analysis is needed to decide whether to modify the number
of products included in the scheduling process or if retaining the
original ‘look-ahead’ count is feasible. This process is crucial in
optimizing the scheduling strategy, especially in contingencies.

An example of this kind of analysis is shown in Fig. 8. This
figure aids in visualizing how the optimal ‘look-ahead’ might
shift in response to different contingency scenarios. In contin-
gency scenarios, we allow a computation time of 120 seconds
and a contingency handling procedure ranging from 20 to 60
nodes, 17 to 82 tasks, and 34 to 164 decision variables.

We recommend users analyze the impact of a contingency
handling procedure on the decision variables. If the computation
time is compressed during contingency handling, they should
look at the optimal product look-ahead for the same computation
time under a no-contingency situation. If a significant impact is
expected on the decision variables because of the contingency,
then the product look-ahead should be reduced by one.

8 CASE STUDY

This case study presents a micro-factory setup tailored for as-
sembling ATVs shown in Fig 6. This factory is segmented into
11 stations, each with a designated function, including one ex-
clusively assigned to manage contingencies. Agents are placed
within these cells to attach components to the ATV chassis. The
cells are equipped with robots for processes like insertion that do
not require significant manual dexterity. However, for more intri-
cate tasks, the cells are designed for human-robot collaboration.



TABLE 2: Comparative Impact of Product Count on Decision Variable Increase and Sub-optimality Under Time Constraints: 15s, 30s
and 60s. “inf” refers to those that failed to produce the schedule within the allotted time.

HTN 1

sub-optimality factor

HTN 2 HTN 3

sub-optimality factor sub-optimality factor

#of # of # of # of
Pro d(:lcts Decision 15s 30s 60s Decision 15s 30s 60s Decision 15s 30s 60s
Variables Variables Variables
1 343 1.17 1.06 1.05 297 1.31 1.10 1.02 234 1.08 1.08 1.08
2 686 1.40 1.24 1.17 594 1.70 1.14 1.15 468 1.20 1.20 1.20
3 1029 1.40 1.28 1.21 891 2.00 1.96 1.21 702 1.86 1.21 1.21
4 1372 1.40 1.38 1.38 1188 2.00 2.00 1.42 936 inf 1.41 1.22
5 1715 inf 1.42 1.42 1485 2.00 2.00 1.51 1170 inf inf 1.51

Additionally, the factory utilizes moving platforms, which
transport parts to the various assembly stations and function as
assembly points. These platforms enhance the fluidity of the as-
sembly sequence, as illustrated in Fig. 9. Upon arrival at the
stations, robots are responsible for loading the parts onto the as-
sembly stations.

The single product HTN for the assembly comprises 27
agents, 960 nodes, and 500 tasks, culminating in 768 decision
variables. Using the method discussed in section 7, we deter-
mine that the optimal approach during regular operations is to
plan with a look-ahead for four products. Under this nominal
scheduling strategy, the makespan for completing ten products is
calculated to be 1346 seconds. We use 60 seconds of computing
time. The method we propose is illustrated through three exam-
ples of potential contingencies that could arise. For this analysis,
we use 30 seconds of solving time to compute the task schedule:

Example 1: The robot detects that the engine was incor-
rectly assembled while assembling the lower cover, as shown in
Fig. 5. Addressing this issue necessitates disassembling the ve-
hicle down to the engine. This adjustment adds 44 new nodes
to the task network, encompassing 24 re-do operations to cor-
rect the issue, six contingency operations to manage the process,
and 13 un-do operations to dismantle the necessary components.
Consequently, an additional 92 decision variables are introduced,
and it becomes essential to reduce the look-ahead from four prod-
ucts to three to manage the increased complexity and maintain a
feasible solution within the operational constraints.

Example 2: The required battery part is missing during the
battery assembly phase, as depicted in Fig. 10, and the robot
must wait for the part. The moving platform is then tasked with
delivering the part to the station. Subsequently, the robot replen-

ishes the inventory before continuing with the standard opera-
tions. This contingency introduces an additional 23 nodes, which
include 14 operations related to the contingency—such as noti-
fying the monitoring system, updating the cell status, and han-
dling the parts upon arrival. Similar to the first example, this
scenario also necessitates reducing the look-ahead from four to
three products to accommodate the changes and sustain opera-
tional efficiency.

Example 3: During the screwing operation, a screw be-
comes jammed as the robot secures the engine, illustrated in Fig.
10. The procedure requires the cell to signal this contingency
and pause operations pending the issuance of a revised schedule.
Subsequently, the robot must reverse the screwing action to re-
move the stuck screw, detach and discard the compromised screw
from its end-effector, retrieve and position a new screw, and at-
tempt the screwing operation again. This contingency introduces
11 additional nodes, including six dedicated to handling the con-
tingency. In contrast to the previous examples, this contingency
does not necessitate reducing the look-ahead for product schedul-
ing. The number of additional nodes and operations is relatively
minor, and the system’s existing capacity can absorb the impact
without needing to adjust the look-ahead strategy.

9 CONCLUSIONS

This paper extends our prior work on handling contingencies
in single-product single-station scenarios to multi-product multi-
station scenarios. This requirement necessitated the development
of a flexible factory layout capable of dynamically managing the
assembly sequence to minimize idle time. We show that the man-
agement of computational complexity is needed to achieve near-
optimal performance in this challenging problem. This method
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FIGURE 7: The graphs show that depending on the complexity of
the HTN, the optimal look-ahead for product count in HTN dif-
fers. It is worth noting that the pseudo-optimal makespan could
be lower if given a highly elongated compute time.

ensures that even with limited time and computational resources,
the task schedules generated are as close to optimal even with
limited time and computational resources. Furthermore, we in-
tegrate a contingency station within the cell that enhances op-
erational resilience by enabling a flexible disassembly and re-
routing process to revert to nominal operations during contin-
gencies. This paper also introduces the ability to manage various
contingencies. We have proposed and detailed a method incor-
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FIGURE 8: The graph shows the analysis of look-ahead includ-
ing the contingency recovery procedures included in the compu-
tation.Example HTN 2 has the most reducrtion in the HTN count
for computation in a contingency event, from 3 to 1, discounting
two.

porating contingency recovery tasks into the computational com-
plexity management framework, ensuring that the task schedul-
ing remains efficient even when encountering contingencies.

In our future work, we plan to incorporate travel costs
associated with transitioning from one task to another so that the
travel time of the agents can also be minimized when generating
the schedule.



FIGURE 9: Autonomous driving vehicle is an assembly platform
for agents to perform operations and bring parts to stations.
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FIGURE 10: Example contingency 1: during the battery assem-
bly operation, the part is not present, and the robot cannot pro-
ceed with the pick operation. Example contingency 2: the screw
is stuck while the robot is fastening the engine.
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