
A LEARNING FRAMEWORK FOR ENABLING ROBOTS TO AUTONOMOUSLY
DISPENSE GRANULAR MATERIAL ON-DEMAND

Jeon Ho Kang, Rishabh Shukla, Moksh Mehta, and Satyandra K. Gupta ∗

Center for Advanced Manufacturing, University of Southern California, Los Angeles, California 90007
Email: jeonhoka@usc.edu, shuklar@usc.edu,mdmehta@usc.edu guptask@usc.edu

ABSTRACT
This paper presents a learning framework for enabling robots
to autonomously dispense granular materials on demand. This
framework enables robots to scoop and transfer the requested
material amount with milligram scale accuracy. Our approach
is capable of handling challenging cases where the amount left
in the source container is significantly less than the container vol-
ume. In such cases, robots must build piles before scooping the
material to capture enough material within the scooper. We use
Gaussian Process Regression (GPR) to predict granular material
behavior during scooping and pouring tasks. GPR is effective
in learning the behavior of granular material with task param-
eters, such as robot joint angles, joint accelerations, and end-
effector geometry. During task execution, we use GPR to solve
the inverse problem and determine the task parameters based on
the desired scooping and pouring amounts. The system perfor-
mance is evaluated by showing GPR’s ability to predict scooped
and poured amounts with reasonable uncertainty. We benchmark
our method against the traditional approach of fine-tuning the
amount via closed-loop control from the scale sensor feedback.
Our method shows 55.2% improvement in time taken to dispense
the granular material over the benchmark approach. The pro-
posed framework shows promising results in terms of reducing
dispensing times.

1 INTRODUCTION
Many applications, such as food preparation, pharmaceutical
manufacturing, medical testing, and handling of energetic ma-
terials, require precise manipulation of granular materials. The
dynamics of granular material are highly complex, character-
ized by chaotic behavior and inter-particle interactions, making
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FIGURE 1: Example container amount for the edge case and regular
case.

it challenging to develop predictive models for accurately con-
trolling the amount dispensed [1]. The physics community has
been striving to characterize granular dynamics.

There is significant interest in using robots to dispense con-
trolled amounts of granular materials on-demand [2, 3]. How-
ever, accurately weighing granular materials at the milligram
scale remains notoriously laborious and time-consuming, posing
ergonomic challenges even for skilled human operators.

In this paper, we introduce a learning framework that en-
ables robots to autonomously dispense the requested amount of
granular material on-demand. Using our approach, robots are
able to scoop granular materials autonomously from the source
container, accurately adjust the material in the scooper (a tool
used by the robot to scoop and dispense material) to the speci-
fied target weight, and transfer this amount to a source container
with milligram accuracy. The task of dispensing granular materi-
als can be divided into two scenarios, depending on the quantity
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of material available in the source container. In scenarios where
the source container is amply filled, the task is straightforward
and is termed as a regular case. Conversely, the task becomes
more challenging in edge cases, where the amount of material in
the source container is small relative to its capacity. This neces-
sitates an additional step of building a small pile. Our system is
adept at managing both regular and edge cases, ensuring precise
material dispensing regardless of the initial material volume in
the source container.

A critical aspect of our system is its focus on optimizing
the time efficiency of the transfer process, especially in instances
requiring multiple stages, to enhance the overall throughput of
the operation. This paper adopts a human-like skill acquisition
framework, leveraging active learning based on Gaussian Pro-
cess Regression (GPR). This methodology enables the robot to
learn and model the relationships between actions and outcomes.
It mimics how humans acquire new skills by observing experts
and refining them through practice, thereby fine-tuning their mo-
tor and perceptual abilities.

The key contributions of this paper include:

1. A complete system for robotic transfer of granular materials
with milligram accuracy, emphasizing time efficiency and
the ability to handle edge cases.

2. The use of GPR for predicting motor parameters needed to
manipulate granular materials, which is challenging due to
its complex inter-particle interactions.

3. A hierarchical decision-making framework that allows the
robot to adapt its plan based on the amount of material in the
source container and the requested target weight, optimizing
for both regular and edge cases.

2 RELATED WORK
The topic covered in the paper closely relates to robotic handling
of fluids and granular materials. Significant efforts have been
directed towards developing methods for handling both liquids
[4–9] and granular materials, given their widespread application
in industrial and household environments [1, 10].

In fluid manipulation, goal-conditioned reinforcement learn-
ing has been explored to improve the adaptability and accuracy
of robotic scooping, with frameworks like GOATS demonstrat-
ing enhanced performance in both simulated and real-world sce-
narios [11]. Deep learning models have been used to refine the
precision of robotic pouring, leveraging gated recurrent units and
self-supervised learning to better understand pouring dynamics
[12]. These advancements underscore the shift towards learning-
based approaches for improved control over complex manipula-
tion tasks. Efforts to incorporate force-based control and percep-
tion have also been noteworthy. Rozo et al. utilized parametric
hidden Markov models for force-based learning in robotic pour-
ing, capturing the intricacies of force-torque dynamics with re-

spect to liquid volume [5].
Granular material manipulation poses unique challenges due

to the unpredictable nature of granular flow. Research in this area
has introduced manipulation strategies based on Gaussian mix-
ture models and hybrid force-velocity systems, facilitating real-
time, adaptive handling of granular materials [13,14]. Moreover,
bimanual scooping methods have been developed to improve the
efficiency of such operation [15].

Learning from demonstration (LfD) has gained popularity
for teaching robots granular material manipulation skills, en-
abling the acquisition of complex motion primitives from human
demonstrations [16, 17]. By observing human experts, robots
can acquire motion primitives that are difficult to design through
traditional programming methods. Early work by Yamaguchi et
al. [18] explored acquiring pouring skills through demonstration,
emphasizing the optimization of continuous parameters for ac-
tions such as pouring, shaking, and tapping. Their follow-up
work [19], delved into planning and learning modeled from hu-
man demonstrations to adapt pouring behaviors across a variety
of scenarios. To achieve this, robots must be equipped with a
library of skills and learn to select appropriate behaviors and be-
havioral parameters for each specific task. Integrating these tech-
niques has resulted in robots that can effectively plan and learn
to handle various strategies for scooping, pouring, and even com-
plex tasks like pile-building [20]. In addition to LfD, active learn-
ing strategies have been employed to refine the robot’s perfor-
mance over time. For example, Langsfeld et al. [16] address the
challenges of dynamic pouring tasks by introducing an approach
that iteratively refines local metamodels based on exploitation-
driven updates, significantly reducing the need for physical trials
in learning trajectory parameters.

Simulation techniques play a crucial role in the development
and testing of manipulation policies. High-performance simula-
tion platforms like Isaac Gym allow for the rapid prototyping
of tasks, facilitating a smoother transition from simulated en-
vironments to real-world applications [21, 22]. Similarly, sim-
to-real reinforcement learning has been employed to manipulate
deformable objects, demonstrating the efficacy of domain ran-
domization in bridging the simulation-to-reality gap [23, 24].

Advancements in robotic perception, such as stereo vision,
tactile sensing, and audio-visual networks, have improved pre-
cise material handling and manipulation tasks [2, 25, 26]. Re-
search has shown tactile sensing’s effectiveness in granular me-
dia manipulation [26] and explored tactile-based motions for
challenges like pouring from deformable containers [27, 28].
Multi-modal approaches that combine audio-visual networks
have been used for improved material handling [2, 3, 29–31].
These efforts highlight the significance of multimodal sensing
in enhancing robotic efficiency and accuracy in complex tasks
[32, 33].

Recent works in this domain have focused on the physical
properties of granular materials and the challenges they pose for
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robotic manipulation. For example, Matl et al. [34] focused on
inferring material properties of granular media to simulate these
substances more accurately. Also, Tuomainen et al. [1] proposed
learning particle interactions through a graph-based representa-
tion, offering a novel approach to planning manipulation trajec-
tories. Schenck et al. [35] tackled the challenge of robotic ma-
nipulation of granular media by evaluating predictive models that
accurately simulate scooping and dumping actions.

Gaussian Process Regression (GPR) is a useful tool for mod-
eling the complex dynamics of granular materials. Its ability to
incorporate prior knowledge and provide predictions with uncer-
tainty estimates makes it well-suited for applications in robotic
manipulation where direct modeling of the physics is challeng-
ing [36]. Furthermore, GPR also improves the model’s explain-
ability compared to neural-network (NN) based methods. Our
research builds upon these foundations by proposing an end-to-
end learning framework that employs GPR informed by real-
world, physics-based data. Unlike the reinforcement learning
and simulation-based approach utilized by Kadokawa et al. [37],
our method leverages GPR to model the unpredictable behav-
ior of granular materials under various conditions. The use of
such data-driven insights into granular media dynamics lays the
groundwork for more adaptive and precise robotic systems capa-
ble of autonomously dispensing granular materials on-demand.

3 PROBLEM FORMULATION
Background. In this paper, we aim to minimize the expected
dispensing time. Our experimental setup uses an ABB IRB120
industrial robot, which produces smooth motions and does not
cause vibrations in the scooper. We utilize a 0.1mg precision
scale to monitor the weight of the source container, enabling us
to accurately estimate the amount of material the scooper has
collected. The source container, with a diameter of 6.5cm, was
placed on the weighing scale, while the target container was
placed outside the scale. We also have a 2-D RGB camera to
capture the granular material’s profile on the weighing scale. The
hardware setup is illustrated in Fig. 2.
Problem Statement and System Objective. During each re-
quest, the robot’s task is to dispense a target quantity of gran-
ular material, mt, with an accuracy of ±1mg. At the initiation
of the task, the system acquires data regarding the mass of gran-
ular material in the source container, symbolized by ms. The
primary goal of our system is to minimize the cumulative dura-
tion required for the material’s transfer, symbolized by tT . This
aggregate metric encompasses the duration associated with var-
ious phases of the process. Specifically, tp represents the time
spent pile building, while ts indicates the time spent for scoop-
ing activities. The variable td denotes the time spent on remov-
ing the excess material from the scooper to achieve the target
weight, mt. Furthermore, tt denotes the duration involved in the
complete transfer and dispensing all to the target container. The

FIGURE 2: Our hardware setup of the system. We incorporate a vi-
bration motor attached to the end-effector, mimicking the human finger-
tapping action. This vibration motor introduces perturbation like human
finger-tapping, helping a more uniform distribution before the pouring
phase. This motor is also used for bulk-pouring discussed in Section 7

overall time component of the time taken can be represented as
the following:

tT = tp + ts + td + tt (1)

Within this framework, we assume that tt is almost constant.
Hence we can disregard it during optimization. Additionally, we
introduce to as the time duration used in the objective function.

to = tp + ts + td (2)

and our objective function can be defined as the following:

minimize(E(to)) (3)

where E(to) is the expected value of to.
We use different methods for managing different cases based

on the material mass present in the source container. The primary
focus of our study is to discuss in detail the method for address-
ing edge cases, which represent challenging scenarios in granu-
lar material manipulation. These cases require the robot to build
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a pile to form a granular material profile to facilitate effective
scooping.

Within the context of the scooper and container configura-
tion depicted in Figure 1, we categorize edge cases as situations
where the amount of material in the source container, ms, ranges
from 1000mg to 3000mg. This range can be empirically iden-
tified as requiring a pile-building method to ensure the robot
can accurately scoop a target amount within the same range,
20mg ≤ mt ≤ 200mg.
Inverse Problem using Physics-Informed GPR. Our method
uses GPR as a predictive mechanism to improve skills in manip-
ulating granular materials through active learning. During the
training phase, GPR forecasts task outcomes, such as scooped
and poured amounts, based on task parameters (e.g., joint angle,
acceleration, and granular material shape). After establishing the
model, we solve the inverse problem to retrieve task parameters
that will most likely result in the desired material amount. During
execution, we solve the optimization problem to find the perfor-
mance parameters suited to achieving the desired outcome, such
as poured and scooped amount. We aim to find such parameters
with minimum standard deviation since GPR predictions have
both physical and model uncertainties. In our framework, we
recognize the presence of noise in physical experimental data.
To account for this variability in our model, we conduct multiple
repetitions of experiments with the same input parameter. Details
of the approach are shown in Fig. 3.

We use the Limited-memory BFGS with Bounds (L-BFGS-
B) algorithm, a variant within the quasi-Newton optimization
methods, to solve the uncertainty minimization problem [38].
This technique is particularly effective for solving smooth, non-
convex optimization problems that involve multiple variables.
An initial estimate, x0, is necessary for the algorithm to search
for a minima. We perform iterations using various initial guesses
to enhance the likelihood of finding a minimum that aligns with
our requirements. However, due to the inherent non-linearity of
GPR’s approximated functions, it is worth noting that the minima
may not necessarily represent the global minimum.

Let σ be the standard deviation associated with the GPR-
predicted value for granular material behavior, mdesired be the
desired mass of the grains, and Ptarget be the target performance.
The objective function of the optimization problem is given as:

minimize(σ) (4)

Subject to the constraint:

Ptarget = mdesired (5)

30 ≤ θjoint ≤ 80 (6)

We apply a constraint that the joint angle, given as θ joint
must fall within the range of (30,80) degrees. This is based on
our experimental findings, which indicate that a joint angle lower
than 30 degrees fails to pour any material from the scooper, and
an angle beyond 80 degrees results in pouring all the material,
thereby not affecting the end result.

At this stage, we are given Ptarget (e.g., amount to be poured
or scooped) and determine the task parameters. We progressively
narrow the uncertainty margin by continuously augmenting our
dataset with real-time feedback. The active learning scheme is
shown in Fig. 3.

Typically, GPR models rely on the proximity of data points
for accurate fitting and predictions, with their effectiveness de-
pending on the quantity and quality of the data available. How-
ever, it is often impractical to collect large amounts of physical
data. To address this, we integrate mean functions and physi-
cal constraints derived from real-world observations of granular
materials. For example, we introduce constraints to prevent the
model from suggesting negative values for certain variables, as
such results are not physically feasible. Additionally, we incor-
porate knowledge indicating that parameters such as pile size,
joint acceleration, and joint angle directly impact the average
quantity of material scooped and poured. This mean function,
represented as m(x), is defined as follows:

m(x) =
K

1+ e−B(xi−x0)
(7)

Where:

xi is the i-th feature in the prediction.
xo is the mid point of the curve.
K is the gain component to the sigmoid function.
B is the rate of increase of the function.

Subject to the constraint:

ms,mp ≥ 0 (8)

where:

ms refers to the amount scooped
mp refers to the amount poured.

This mean function lets the model follow the general trend
of a sigmoid function, resulting in a smooth increase in the pre-
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FIGURE 3: GPR inverse Problem Framework: We use GPR to predict performance metrics such as scooped and poured amounts with task
parameters like joint angle or granular contour score. Upon prediction, we solve the inverse problem with fixed uncontrollable parameters such as
amount in the container and in-scoop amount (we assume that pouring is an independent problem from scooping), to make decisions on task parameters
that will most likely achieve the desired material amount. Active Learning System Architecture: We use this inverse problem framework for scooping
and pouring phases to actively learn appropriate values for the desired material amount. Initially, the robot begins with a training dataset. This dataset
is updated through iterative task execution, enabling continuous improvement of the robot’s performance based on real-time feedback and outcomes.

dicted outcome, with adjustable parameters to regulate the rate
of increase in performance outcome.

Overview of Approach. We separate the granular material dis-
pensing tasks into stages that align with the case, depending upon
the remaining volume of material in the source container, as ex-
plained in Section 4. The robot uses the motion primitives ac-
quired from human expert demonstrations through a motion cap-
ture system.

Specifically, within the adjusting phase, we define two dis-
tinct motion primitives to optimize the adjustment of the in-scoop
material quantity. The first method, termed bulk-pouring, uses
GPR to calculate the most effective joint angle and accelera-
tion parameters for releasing a substantial volume of material in
a single motion. This technique is designed to reduce the ini-
tial discrepancy between the current and desired material quanti-
ties, thereby reducing the time used in the subsequent fine-tuning
phase. The second technique focuses on fine-tuning (shaking
motion), which is critical for achieving the precise target amount,
mt, with an accuracy of ±1mg. Traditional methods for attaining
this level of accuracy typically involve incremental adjustments

of approximately one milligram. However, this approach is ham-
pered by the inherent sensor delays associated with measuring
such minute quantities, a standard limitation of milligram scale
problems.

Addressing the challenges of edge cases necessitates an ini-
tial focus on constructing an effective pile-building method. Ef-
fective pile-building is accomplished by using RGB images of
the source container and utilizing binary segmentation to delin-
eate the granular material profile. Subsequent application of k-
means clustering identifies clusters within the material profile
and determines the centroid of each contour to determine the
most effective pile-building paths. This methodology is detailed
in Section 5.

Upon completing the pile building, the robot proceeds to
scoop along a pre-planned trajectory, aiming to approximate the
target mass, mt, as closely as possible. Given the unpredictable
behavior of granular materials and the sensitivity of milligram-
scale measurements, exact scooping quantity cannot be guaran-
teed. Therefore, we approximate the scooping outcome based on
the granular contour score calculated based on the distribution of
the material in the container. Depending on the initial scooping
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outcome, a decision is made regarding the necessity for prelim-
inary bulk-pouring before fine-tuning to the precise target mass.
Further details of using GPR for both the scooping and adjusting
are explained in Section 6 and 7.

4 HIGH-LEVEL DECISION MAKING PROCESS FOR
DISPENSING GRANULAR MATERIAL

The complexity of the task depends on the amount of material
present in the source container. Therefore, the framework be-
gins with task difficulty assessment, utilizing inputs such as the
RGB image of the source container and material mass estimate
obtained from the scale. We assume that the density of the ma-
terial is known in advance. Based on this assessment, tasks are
categorized into edge or regular cases. Our system defines edge
cases as scenarios involving less than 3000mg of material. These
cases often necessitate a pile-building method for scooping tasks,
especially when aiming to scoop a target amount of up to 200mg,
the maximum our system is designed to handle.

In regular cases, where the container’s material volume is
sufficient, the robot can easily scoop amounts exceeding the tar-
get. Following scooping, we solve the inverse problem using
GPR for pouring to optimize joint angle and acceleration based
on the in-scoop material amount and the target amount. After
initial adjustment by removing excess material, the robot fine-
tunes the amount until achieving the material within ±1mg. The
system diagram is shown in Fig. 4. While our paper covers the
process for handling regular cases, it primarily details the method
developed for managing edge cases.

5 APPROACH FOR AUTOMATED PILE BUILDING
When there is a relatively low amount of material in the source
container, humans either tilt the container or use pile-building
strategies to scoop enough amount. In our system, we use pile-
building method, because we aim to build a system that mimics
the human’s approach as much as possible. Currently, we use one
robot arm, and therefore container tilting is not possible. Using
a second arm will increase the cost of the system considerably.

To minimize the overall expected execution time for trans-
ferring granular material, we develop a pile-building perception
pipeline. This pipeline is designed to maximize the amount of
material gathered while minimizing the number of tool move-
ments. We use RGB images without depth information because
depth data at this scale is often too noisy to be useful. To ad-
dress the lack of depth information, we assume a uniform height
and calculate the height using the material’s density and volume.
This allows us to approximate the mass distribution in the con-
tainer by using scale feedback.

We first use binary segmentation to separate granular mate-
rial from the container. Based on this binary segmentation, we
calculate the distribution score from the image. Then, using the

FIGURE 4: Overall plan for granular material dispensing. This diagram
shows approaches for handling the regular and edge case.

k-means clustering, we determine the centroid and the clusters.
When considering the scooping method, we know that the most
efficient method would be to scoop from the container edge to
prevent granular material from slipping from the scooper. There-
fore, we compute the tool path from the centroid, which is the
likely point with the most material, to the edge point of the con-
tainer. We then draw the potential pile-building paths from the
contour edges to the edge point to enable effective pile-building.
Example paths and implementation are shown in Fig. 5. For each
pile-building motion, the robot queries the system for the cur-
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FIGURE 5: Path-planning framework for pile-building. The green line
shows the path for scooping, and the red shows the pile building. Ini-
tially, we have RGB image of the container. Then, we use binary seg-
mentation to get the spread of the material. Then, using clustering, we
know the contour and the centroid of the material inside the container.
Using the centroid lets the robot plan the scooping tool path as well as
the pile-building method to gather granular material along the tool path.

FIGURE 6: The figure illustrates the robot executing a predefined
scooping motion primitive, guided by a tool path derived from an RGB
image, as detailed in Fig. 5. The sequence begins with the robot strate-
gically approaching the container, subsequently engaging in a scraping
action along the container’s bottom at a specific pitch angle to accumu-
late material. The process ends with the robot elevating the scoop and
completing the scooping task.

rent score, and pile-building will terminate once it has reached
the spread score, enabling the robot to scoop as close to the tar-
get amount as possible. This score is also used in training GPR
model for scooping discussed in Section 6.

6 GPR FOR ENABLING EFFICIENT SCOOPING
The ability to scoop a target amount of material with the least
amount of uncertainty is essential to minimizing the time re-
quired to adjust the in-scoop amount to the desired level. To
address this challenge, we use a motion primitive for scooping
derived from observations of human demonstrations. Motion
primitive for scooping is shown in Fig. 6.

Initially, we provide GPR with the granular contour score
and amount in the container to estimate amount of material

TABLE 1: Six representative data for scooping from 100 trials used
during training.

# Exp. Material Distribution Amount Amount

Score in container Scooped

(mg) (mg)

1 1.99 1024 8.2

2 4.80 1011 8.3

3 5.15 1006 11.2

4 5.16 3009 121.5

5 5.25 3007 139.3

6 5.50 3011 133.5

scooped. Example trial data is shown in Tab. 1. In the exe-
cution phase, we solve the inverse problem by inputting the de-
sired amount scooped to the optimizer while fixing mass of the
granular material in the container to estimate the granular con-
tour score suitable for achieving the nearest scooped amount to
the target. These steps are shown in Fig. 3. The methodol-
ogy for deriving the granular contour score is detailed in Section
5. This approach enables the robot to construct an appropriately
sized pile. Illustrations of the amounts scooped following this
pile-building method are depicted in Fig. 5, with subsequent ex-
amples of the scooped amounts provided in Fig. 7. Upon com-
pleting a scooping action, the robot waits for feedback from the
scale to determine if the in-scoop amount meets the target re-
quirement. Should the scooped quantity fall short of the target,
the robot engages in additional scooping from the pile to aug-
ment the in-scoop amount. This iterative process continues until
the material scooped surpasses the target amount. To conclude
this phase, the robot initiates a vibration motion akin to a hu-
man’s finger-tapping motion, consolidating the material at the
center of the scooping surface. This technique prevents material
loss during movement and facilitates a more consistent pour in
subsequent steps.

7 GPR FOR ADJUSTING IN-SCOOPER MATERIAL
CONTENT BY DISCARDING EXCESS MATERIAL

After the robot has scooped material from the container, it ends
up with a quantity exceeding the desired target amount. For mi-
nor discrepancies within a ±7mg range, employing fine-tuning
primitives is a practical approach. These primitives incremen-
tally adjust the quantity, enabling the robot to achieve the target
amount accurately. Fig. 8 illustrates the adjusting motion primi-
tives.
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FIGURE 7: Robot scoops from the pile-building and scooping methods
presented in Fig. 5.

FIGURE 8: Motion primitive for pouring. a) shows the motion prim-
itive for pouring bulk amount at once, and b) shows the shaking small
amount to fine-tune in-scoop amount by under 1mg.

However, challenges emerge when the discrepancy between
the scooped and target amounts is substantial. When the devi-
ation from the target amount is significantly beyond the ±5mg
range, relying solely on fine-tuning primitives for adjustment be-
comes time-inefficient. To address this issue and minimize the
time spent in fine-tuning, our approach shifts towards removing
the excess amount in bulk. This approach involves pouring out
a portion of the scooped material before fine-tuning the remain-
ing quantity to reach the target. By initially reducing the excess
amount through bulk-pouring, the time required to adjust the in-
scoop amount to the desired level is significantly reduced, and
this result is shown in Section 8. We empirically determine the
deviation values, ±5mg and ±7mg, based on observed data.

Our approach draws parallel with the scooping method to ef-
ficiently manage the challenge of adjusting the material quantity
within the scoop to the target amount, particularly after scoop-
ing more than necessary amount. We parameterize the pouring
motion based on variations in joint angle, acceleration and in-
scooper amount. We create a model that maps these task pa-
rameters and the initial scooped quantity to the amount poured.
Then, we use the same approach used in scooping to solve the

inverse problem described in Fig. 3.
An example of trial data for GPR is shown in Tab. 2. While

recognizing the inherent physical and model uncertainties that
may prevent the precise pouring of an exact amount, our method
enables the robot to search for the parameters with minimum
standard deviation in predictions. This process optimizes the
bulk-pouring action to bring the in-scoop quantity close to the
desired target amount. Following the adjustment through bulk-
pouring, the robot employs a fine-tuning primitive characterized
by gentle shaking motions as shown in [37]. This step precisely
adjusts the remaining amount in the scooper, ensuring that the
final quantity matches with the target amount with the required
accuracy.

TABLE 2: 6 representative training data for scooping from 100 data.

# Exp. Joint Amount Acceleration Amount

Angle Scooped Factor Poured

(degrees) (%) (mg) (mg)

1 25 584.0 0.4 100.2

2 26 656.3 0.4 118.3

3 27 430.9 0.4 45.3

4 28 555.0 0.4 84.9

5 29 521.4 0.4 93.4

6 30 423.0 0.4 78.5

8 RESULTS
We test our system with granular material, 70 mesh silica sand
shown in Fig. 9 and system setup shown in Fig. 2.

8.1 GPR Efficacy
We demonstrate the predictive capabilities of our model in han-
dling granular materials during scooping and bulk-pouring in
Figure 10. We illustrate the deviation between actual and pre-
dicted values and the uncertainty bounds based on training
dataset of 100 initial trials. The findings indicate a higher level
of uncertainty in predictions for scooping compared to pouring,
which aligns with our expectations. Specifically, the uncertainty
bounds for scooping are observed with an upper limit of 40mg
and a lower limit of 25mg. In contrast, the uncertainty bounds
are lower for bulk-pouring, with an upper limit of 6mg and a
lower limit of 3mg.
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FIGURE 9: The figure shows the comparative size of 10mg and 50mg
of 70 mesh silica sand used in our case study.

8.2 Total Execution Time of Granular Material Transfer
In this section, we show the total execution time taken for real-
world execution of the granular material transfer. We report each
parameter that we aim to optimize involved in to, composed of
tp, ts, and td . It is important to highlight that the parameter tp
is influenced by the current material distribution within the con-
tainer. The observed behaviors in different scenarios evidence
this relationship. For instance, it was noted that the robot de-
cided to accumulate more material into a pile despite having a
considerable amount of material, 2000mg, in the container in
case 1. Conversely, the robot often bypassed the pile-building
step in situations with a denser material presence, as did in case
3. However, upon receiving feedback from the scale indicating
an insufficient amount of material had been scooped, the robot
proceeded to scoop additional material. This extra material was
subsequently adjusted within the scooper to correct the under-
scooping. Tab. 3 depicts each parameters for number of trials.

8.3 Comparison between Control-Loop Fine-Tuning and
Our Method

We also benchmark our method against the traditional method
of scale feedback based closed-loop adjusting of the in-scoop
amount with small shaking motions. For the benchmark, we use
the same method for scooping tool-path planning shown in Fig.
5. For our approach, we use the same experiment results shown

FIGURE 10: The graph compares actual and predicted values, illus-
trating the accuracy and uncertainty bounds of the pouring and scooping
GPR model. The ideal scenario would show the straight line with slope
of 1.

in Section 8.2.

Fig. 11 shows that our method can effectively minimize the
time taken by decreasing the necessity for closed-loop shaking
motion based on scale feedback. Our method performs signifi-
cantly better in scenarios where there is a significant difference
between the amount of material in the container and the target
amount, as observed in case 1 and case 3. Consequently, this
necessitates a longer phase to adjust the in-scooper amount. In
contrast, the performance difference is less pronounced for cases
like case 9 and case 10, where the difference between the actual
and target amounts is minor because our method also tends to
scoop more than the target amount, requiring additional time to
fine-tune and adjust the scooped quantity to meet the target.
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TABLE 3: Total time taken for granular material weighing, denoted as to.

# Exp. Amount Amount in Amount to tp ts td

Requested Container In-scooper
(Result)

(mg) (mg) (mg) (s) (s) (s) (s)

1 50 2086 50.5 65 17 3 45

2 30 1035 30.9 44 27 8 9

3 95 2028 95.4 24 0 12 12

4 60 1020 59.5 32 15 5 12

5 75 1202 74.4 110 74 3 33

6 40 1776 40.8 107 89 14 4

7 100 1700 99.2 29 10 5 14

8 150 2129 149.7 37 12 4 21

9 170 3017 169.2 89 0 25 64

10 200 3004 200.3 67 21 6 40

FIGURE 11: Comparison between our method and using scale sensor
feedback as a control loop to adjust sub-milligram fine-tuning.

9 CONCLUSIONS
In this paper, we show that the robot can dispense a target amount
with ±1mg accuracy from the source container to the target con-
tainer in a time-efficient manner. We use an effective method
for pile-building to minimize the number of motions to gather
enough material for scooping. Then, we use GPR to learn the
parameters for scooping as close to the target as possible to min-

imize the time needed to adjust the in-scooper amount. We pro-
pose another GPR for discarding excess material in the scooper
to map the parameters to minimize the control-loop fine-tuning
needed. Our result shows that the robot can learn methods to
scoop the approximate amounts for the target amount and discard
the excess material to bring the material in the scooper close to
the target amount while minimizing the time taken.

For future work, we will explore the generalizability of our
method by experimenting with a wide variety of materials and
scooping tools. Also, we aim to extend our work by extending
material amount bounds to a higher threshold to ensure that the
robot can handle more diverse cases for dispensing granular ma-
terial.
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