
SAFE ROBOT TO HUMAN TOOL HANDOVER TO SUPPORT EFFECTIVE
COLLABORATION

Jeon Ho Kang, Paolo Limcaoco, Neel Dhanaraj, and Satyandra K. Gupta ∗

Center for Advanced Manufacturing, University of Southern California, Los Angeles, California 90007
Email: jeonhoka@usc.edu, paololim@bu.edu, [dhanaraj,guptask]@usc.edu

ABSTRACT
Robot-to-human mechanical tool handover is a common task in a
human-robot collaborative assembly where humans are perform-
ing complex, high-value tasks and robots are performing sup-
porting tasks. This paper discusses an approach to ensure the
safe handover of mechanical tools to humans. We introduce a
framework to enable smart robotic assistants to safely and ef-
ficiently perform robot-to-human tool handovers. Our system
utilizes a specialized gripper design capable of firmly grasping
objects with irregular geometries. We utilize a tool end detection
method so that the robot grasps the tool end and ensures that the
human can safely grab the handle during handover. Additionally,
the system is able to detect if the tool moves during the grasping
process and either restart the pickup or account for the new ori-
entation during hand-off planning. Lastly, the hand-off planning
ensures the robot releases the tool at the appropriate time when
the human has safely grabbed the handle. Our experimental re-
sults indicate that our system can safely and effectively hand off
many different types of tools. We have tested the system’s abil-
ity to handle contingencies that may occur during the handover
process successfully.

1 INTRODUCTION
Recent developments in collaborative robots have opened up new
possibilities for humans and robots to work together in manufac-
turing applications such as assembly, service, and maintenance
operations. By leveraging their respective strengths, humans
can focus on tasks that require advanced dexterity and critical
thinking, such as assembling fragile sensors on satellites, while
robots like mobile manipulators can function as intelligent assis-
tants that perform supportive tasks such as retrieving and handing

∗Address all correspondence to this author.

(a) dangerous handover

(b) safe handover

FIGURE 1: A human operator is assembling a miniature satellite and
has requested a tool from the robotic assistant. The figure shows a) a
dangerous tool handover and b) a safe tool handover by the smart robotic
assistant.
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over tools as needed [1]. However, robots must not compromise
safety while helping humans. Humans may become immersed
in their tasks and they may lose awareness of their surroundings.
Therefore, when robots assist humans, for example, by handing
an operator a sharp tool, they must consider the human’s safety.
To accomplish this, smart robotic assistants must be capable of
1) deciding how to pick up and handover the tool properly and 2)
ensuring safety during the handover process.

Generally, we would want to handover tools to the human
operator by holding onto the unsafe end of the tool, allowing the
recipient to grab the handle safely. Using collaborative robots
allows us the opportunity to grab the unsafe end of the tool. To
begin with, when picking up the tool, the robot must identify
where the human operator is likely to grasp the tool (the handle
end) and determine the best approach for holding the unsafe part
of the tool (the tool end). Lastly, when handing over the tool, the
robot will need to consider the orientation of the handle end for
planning the tool hand-off so that the human can ergonomically
grab the tool.

In this paper, we focus on ensuring safety during all stages
of the handover process. For example, when the robot picks up
the tool, the heavy and irregularly shaped tool end can cause the
tool to slip from the robot’s grip. We must design a gripper that
can conform and firmly grasp the tool end to address this issue.
Even then, the tool may still slip or rotate within the secure grasp.
In such cases, the robot must detect the severity to which the tool
has moved and decide whether to restart the process or continue
the tool handover. During hand-off execution, effective commu-
nication between humans and robots is crucial to ensure safe tool
release and prevent errors. The human must be able to indicate
to the robot when to release the tool safely or halt the handover
if the wrong tool is detected.

Various aspects of this problem have been studied in dif-
ferent contexts. General object handover planning has been ex-
plored extensively concerning human-robot interaction, and en-
abling the robot to recognize the handle and tool end is a ver-
sion of tool affordance modeling for the robot [2]. Additionally,
research has been conducted on gripper design and grasp plan-
ning for both general and human-centric applications [3–7]. This
paper builds upon these ideas and presents an end-to-end sys-
tem for robot-to-human tool handover that ensures safety at each
stage of the handover process. We describe our hybrid gripper
design, which is designed to firmly grasp tool ends in Section
4. We discuss our approach to determine the tool end and select
the robot grasp location on the tool end in Section 5. Finally, in
Section 6, we present our method for hand-off planning and ex-
ecution. We individually evaluate the robustness of each module
in our system and validate our system design decisions. More-
over, we execute the entire system and show that our proposed
approach is robust, with minimal failures. Lastly, we introduce
simulated failures into the system and show how our approach
handles these contingencies. Our work demonstrates a new, ro-

bust, safe-tool handover framework that can be used with smart
robotic assistants to enable safe human-robot collaboration.

2 RELATED WORK

Grasp Planning. Grasp planning is a challenging problem in
robotics, as it heavily relies on the geometry and physics of the
object. Researchers have extensively studied object manipulation
to develop safe and efficient grasping methods. Several methods
have been proposed to tackle this problem in recent years. For in-
stance, sampling-based methods, neural network models, and 6-
DOF pose estimation have been utilized to generate stable grasps
[8–16]. Additionally, some researchers have presented deep re-
inforcement learning methods to generalize grasping techniques
to unseen objects [17]. Other studies have proposed algorithms
to measure grasp quality [18] or reduce the computational costs
associated with grasp sampling [19]. However, many of these ap-
proaches do not consider the context in which grasping occurs.
Recently, context-aware grasp planning has emerged as an im-
portant area of research [20]. In particular, human-aware grasp-
ing has gained considerable attention to ensure safety in human-
robot interaction. For instance, [7] proposed a method called
Co-grasp that predicts the human hand based on the point cloud
data of the object and maximizes the grasp-approach vector of
the human and the robot.

Robot-to-Human Handover. Robot-to-human handover is a
complex task that requires careful consideration of safety and ef-
ficiency. While grasp planning is an essential aspect of handover,
it is not the only factor determining safety in many contexts [21].
As a result, many studies have proposed various solutions to ad-
dress the challenges associated with robot-to-human handover.

Approaches to enable robots to work collaboratively with
humans include designing custom controllers, communication
systems, and human-aware motion planners [3, 5, 22–24]. Real-
time vision capabilities in robotic systems have also been shown
to be important for fluid robot-to-human handover [4] [6]. In
some cases, tool affordance models have been developed to fa-
cilitate the handover of mechanical tools [7] [25]. In manufac-
turing, studies have explored the impact of trust in humans on
the efficiency and safety of manufacturing tasks and the role of
robotic assistants in those settings [1, 26–28]. Additionally, be-
havioral traits of humans and robots have been considered to op-
timize human-robot collaboration. [29–32].

In this paper, we focus on the entire system involved in
robot-to-human handover, particularly emphasizing the manu-
facturing context. We aim to develop a comprehensive approach
that addresses the various steps in ensuring safe tool handover
and handles the contingencies that may arise during each step.



3 SYSTEM OVERVIEW
System Requirement. Our objective is to create a secure and
reliable system in which a mobile manipulator is able to hand
over tools to a human collaborator. To evaluate the system’s
performance, we conducted experiments with various hand tools
typically found in mechanical workspaces. We examine tools
with varying physical dimensions, including length ranging from
8.2cm to 30.4cm, width ranging from 2.1cm to 11.4cm, and
height ranging from 2.6cm to 8.1cm. The weight of these tools
ranges from 0.6kg to 3.2kg and encompasses common items such
as pliers, files, tape measures, and scissors. To retrieve a re-
quested tool, a robotic manipulator scans potential storage lo-
cations such as cabinets, tool chassis, or tables. The robot then
generates a safe and effective grasp plan with contingency plans
for any unsafe events. Finally, the robot hands over the tool to
the human and releases the tool after receiving feedback from the
human.
System Hardware. We use a mobile manipulator platform for
our hardware system. Our mobile manipulator consists of a UR5
robotic manipulator mounted on a custom mobile base equipped
with mecanum wheels. To locate and identify the object to be
picked up, an Intel Realsense D-435 camera is mounted on the
hand of the robotic manipulator, which provides RGB-D data of
the workspace. Additionally, another RGB camera is attached to
the base of the mobile manipulator to detect failures during the
grasping process. Also attached to the mobile base is the Oak-D
camera for human hand gesture recognition. The system includes
a specialized hybrid end-effector design, which we explain in
detail in Section 4. Fig. 2 shows the complete setup of our mobile
manipulator.
System Software. In order to ensure a smooth and safe handover
of tools from the robot to the human collaborator in the mechan-
ical workspace, we have carefully considered potential contin-
gencies that may arise. One of the key factors we addressed is
the detection and localization of the tool end. The tool end de-
tection is crucial for the safe tool handover, as shown in Fig. 1.
Our method for tool end detection is discussed in detail in sec-
tion 5. Another critical consideration in the system is the motion
planning framework, which is essential to avoid collisions with
the environment and generate a secure grasp on the object. To
achieve this, we utilize the ROS MoveIt! framework to combine
multiple sub-components into a robust integral system.

To plan the grasp, we use Grasp Pose Detection (GPD) [33].
The pose detector samples different grasps along the tool end to
generate an adequate grasp for our application. A more detailed
discussion of grasp planning is provided in section 5. To ensure
that the grasp is successful, an RGB camera mounted on the ma-
nipulator arm detects a poor grasp by observing the in-hand pose
of the tool and reads the angle to determine whether the grasp
has been successful. Finally, hand-gesture recognition allows the
robot to know when to hand off the object. The later section pro-
vides more details on the contingency planning for the hand-off.

FIGURE 2: The mobile manipulator hardware.

By addressing potential contingencies at every step of the pro-
cess, we have designed a reliable, safe, and efficient system in
the manufacturing workspace.
System Operation. When a human collaborator requests a tool,
the mobile manipulator navigates to the surface where the tool is
located, scanning and searching the workspace for the requested
tool. Then, it detects the tool location in the workspace using an
object detection module [34], and detects the tool end for grasp
sampling and location selection for the optimal grasp. The robot
generates an optimal motion plan to reach the object without col-
liding with the environment and picks up the tool from the table.
To ensure a safe hand-off to a human agent, the RGB camera on
the robotic manipulator detects the in-hand angle to determine
the quality of the grasp. We use different algorithms to plan the
safest hand-off based on the in-hand angle. When the robot gen-
erates a motion plan to hand off the tool to a human, the Oak-D
camera on the mobile base of the manipulator takes human hand
gestures to safely release the tool from the gripper. If the tool has
been handed-off with the dangerous side pointing towards the hu-
man or if any perilous event occurs, human intervention prevents
any mishap by showing a stop gesture. The robot stops, puts
down the tool, and replans the grasp. The system architecture
of the handover system, which handles multiple contingencies,
such as when to reorient the tool or abort and retry for another



grasp, is presented in Fig. 3.

4 GRIPPER DESIGN
Gripper Requirements. While designing the gripper for our
robotic system, we had to consider multiple factors to ensure ef-
ficient and reliable handling of tools:

1. Ability to grasp flat tools on a table. This requirement is
critical since many tools used in the workspace have a flat
geometry and require a gripper that can handle them without
displacement.

2. Ability to handle varying irregular geometries, which can
be challenging for some grippers due to the limited contact
surface of their fingertips. A robust and adaptable gripper
was necessary to handle tools of different shapes and sizes
effectively.

3. High payload capacity, as some tools in the workspace have
a maximum weight of 3.2kg.

4. Ability to handle uncertainties in maintaining a good grasp
quality while transporting the object. A reliable grasp re-
quires the gripper to hold the object firmly without displace-
ment or rotation during handover. Such grasps can be chal-
lenging when dealing with tools with a high moment of in-
ertia due to their long geometry.

5. Adaptable to the varying geometries and materials of the
tools, ensuring a reliable and stable grip during the handover
process. We had to consider the material of the objects, as
typical tool ends are metallic and have different friction co-
efficients than handles.

We evaluated various gripper types, such as two-finger, multi-
finger, malleable, and suction grippers, to meet the requirements.
Due to their low payload capacity, we eliminated suction grip-
pers as viable options. We ultimately chose two-finger parallel
grippers due to their low cost and ease of actuation compared
to multi-finger grippers. However, two-finger grippers with
rigid fingertips tend to perform poorly when grasping tools with
irregular geometry. Therefore, the rigid fingertip was replaced
with a malleable fingertip. Ultimately, we used rigid fingers
with a soft granular jamming finger-tip to improve the gripper’s
adaptability. The soft pads on the fingertips mold to the tool’s
shape, providing additional support against in-hand torque and
generating more excellent stability when grasping irregular
geometries. Initially, we considered using two soft fingertips on
both ends of the gripper. However, we found that using a rigid
fingertip on one end did not significantly affect grasp quality.
Thus, we selected only one soft fingertip for the final design to
minimize the cost of an additional vacuum pump and supporting
components.

Design Concept Selection. To address the limitations of tradi-
tional gripper designs, we introduce a novel specialized gripper

concept that combines the strength and adaptability of two-finger
parallel-oriented grippers with the granular jamming technology
of malleable grippers [35]. Our design is tailored explicitly for
the pick and place of the tool end by being able to completely
conform to irregular geometries, thus ensuring a good grasp on
each object. The granular jammer, connected to a vacuum pump
capable of supplying positive and negative pressure, conforms
to the object’s shape and solidifies the state of particles inside
the flexible, elastic membrane structure to firmly grasp the
object without displacement or rotation during handover. When
finished with a task, positive pressure quickly resets the gripper
for the next operation, increasing speed and reliability. For sharp
edge pick operations, the hybrid form of our gripper utilizes both
mechanical forces from the parallel gripper and friction forces
from the granular jammer to ensure a secure grip. Our design
offers adaptability, reliability, and speed compared to traditional
gripper designs and is promising for robotic pick and place of
tools. See Fig. 5 for a visual representation of our gripper design.

Evaluation. We experimented with testing the performance of
our gripper in meeting the requirements we listed earlier and to
ensure it can safely transport various mechanical tools. We care-
fully selected tools with different geometries that would pose
significant challenges for conventional grippers, like suction
or two-fingered grippers. The tools used in the experiment are
shown in Fig. 4. To demonstrate the robustness of our gripper,
we chose seven commonly found tools in a workspace and
repeatedly tested the gripper’s success rate in grasping them.
We conducted 20 experiments with arbitrary orientations for
each tool to determine the gripper’s ability to grasp the tools
in various configurations. We evaluated the grasp quality in
three classes: robust grasp (success), semi-robust grasp (mixed,
i.e., the grasp that resulted in in-hand rotation of the object),
and failed grasp (failure, i.e., the grasp that could not hold the
object). The experiment results, showing the percentage of each
class of grasp quality, are presented in Tab. 1.

Experiment Results. The experimental results demonstrated
that the novel gripper is capable of picking up a variety of
objects without rotation, with only one instance of failed grasp
observed on the saw. This is due to its flat geometry hindering
the robot from selecting grasps that produce a large area of
contact with the fingertips in certain orientations. However, in
other cases, the gripper successfully picked up the saw with
high stability, and one rotation of the wrench was intentionally
selected to test the gripper’s ability to handle difficult grasp
configurations. Even in this case, the gripper still provided
support from the granular jamming fingertip and prevented the
wrench from rotating beyond a 45-degree threshold. It is worth
noting that the 45-degree threshold was chosen to test adaptabil-
ity during hand-off, but users can choose different values. The
gripper exhibited high repeatability in producing a firm grasp



FIGURE 3: Overview of the system architecture

FIGURE 4: Tools used for testing hybrid granular jammer gripper.

on different mechanical tools with complex geometries. Even
when the granular jamming fingertip is conformed into different
geometries, the gripper produces another firm grasp due to the
positive pressure applied before the next grasp. Fig. 6 provides
examples of gripper grasping tools with irregular geometries.

5 TOOL END DETERMINATION AND GRASP LOCA-
TION SELECTION

In this section, we propose a method of determining the tool
end of the mechanical tools and the selection method for grasp

TABLE 1: Result from grasp success rate test. Mixed grasp refers to
in-hand tool rotation less than 45 degrees; failed grasp includes all the
grasps resulting in the tool’s dropping of the rotation larger than 45 de-
grees.

Mechanical Tools Success Mixed Failure

Hammer 20 0 0

Screw Driver 20 0 0

Box Cutter 20 0 0

Wrench 19 1 0

Pliers 20 0 0

Saw 19 0 1

Tape measure 20 0 0

location. The system must grasp the tool so that the handle part
of the mechanical tool is exposed and the tool end is pointed
toward the robot. The goal is also to ensure that the robot grasps
the tool with maximum stability so that tool does not slip or fall
while transporting it to the human agent. To achieve all these
requirements, we propose a method of determining the tool end
of the object using computer vision.



FIGURE 5: Gripper design for grasping irregular objects.

FIGURE 6: Example of granular soft finger-tip molding into the shape
of irregular geometries of mechanical tools.

There were two methods considered for determining the
tool end. The first method relied on intuition about the general
geometry of mechanical tools. Typically, the tool end has sharp
corners to interact with the environment and generate force and
torque, while the handles are designed to be round and easy to
grasp for maximum stability. Based on this intuition, we plotted
points on a pixel with a sudden change in value to predict the
tool end. However, corner detection has uncertainties due to
pixel discontinuities and faulty recognition of corners towards
the handle. Additionally, some tools have writings or spikes that
provide friction to prevent slipping, making corner detection
unsuitable for those kinds of tools.

To address the challenge of detecting the grasp location
on mechanical tools with different tool end geometries, we
propose a method that involves training a neural network to

(a) Base localization of the robot.

(b) Wrist camera’s view of the workspace

FIGURE 7: Mobile Manipulator localizes the base and searches for the
tool in the workspace. Trained model provides the label and the xy-
coordinates of the tools.

generate a mask for the optimal grasp location. However, given
the wide variety of tool end geometries, it is difficult for a
deep neural network to detect the grasp location for all types of
tools universally. To overcome this challenge, we first gather a
dataset that includes multiple tools and generate a hierarchical
taxonomy of tools that groups similar tool end geometries.
Fig. 8 provides an example of a taxonomy. Once the robot has
determined the tool end, we sample the grasp along the tool end
and determine the grasp location.

Our approach consists of the following steps:

1. Searching for the Graspable Object: When the human agent
asks for a tool, the robot drives to the location where the tool
is located. Then, the robot searches for the asked tool and
determines the location of the tool. The procedure is shown
in Fig. 7

2. Feature Extraction for Tool End Detection Once the robot
recognizes the tool, the robot identifies the class it belongs
to. For example, hammers and mallets would belong to the



same class of impact tools with similar tool end geometries.
Based on the taxonomy of tools, the model for that object
class will detect the region of interest and return a mask that
provides the graspable tool end region. The hierarchical tax-
onomy of tools enables a more straightforward determina-
tion of the most suitable grasp for that class of tools.

3. Acquiring data about the workspace: The in-hand camera
can provide both RGB and depth information about the tool
for processing the 2D image and depth image. With the
acquired 2D image, we run the safe grasp region detection
model to segment the support surface as well as the handle
part from the object of interest.

4. Point Cloud Data Processing: After generating the mask,
we project it on the depth information in order to filter the
point cloud data. The filtered point cloud data represents
only the tool end side of the graspable object, which is the
region we are interested in generating a grasp. By employing
this method, the robot can exclude the handle portion of the
tool from grasp planning, thus ensuring that the handle is
oriented towards the human during hand-off. By filtering
out irrelevant data, the robot can focus on determining the
optimal grasp location for the tool end.

5. Grasp Location Selection: Once we have the point cloud of
the tool end, we use Grasp Pose Detection (GPD) to sample
possible grasps. Typically, the planner generates grasp can-
didates around the tool, as it is designed to handle cluttered
grasps. Therefore, the robot needs to select a grasp that will
not collide with the supporting surface of the object. Also,
we had to consider offsets and some rotation to the sam-
pled grasps because our gripper has a different tool center
point from traditional 2-finger grippers. We aim to gener-
ate a robot grasp as close to the tool end as possible while
achieving a moderately good grasp score. Fig. 9 depicts the
entire pipeline.

6 HAND-OFF PLANNING
When retrieving a tool, uncertainties and challenges can arise
during the pick-and-place operation and hand-off. Even with
specialized grippers designed for picking up tools with irregular
geometries and high moments of inertia, there may be unforeseen
contingencies that must be addressed. Therefore, it is critical for
a smart robotic assistant to be able to handle such contingen-
cies and safely transport the tool to the human operator. Once
a grasp location has been selected, the robotic manipulator must
plan and execute a safe motion to reach the desired hand-off po-
sition. In addition, if the tool rotates within the robot’s grasp, the
robot must be able to quickly and accurately determine whether
to continue with the motion or abort the plan and attempt a dif-
ferent grasp. To plan for a successful hand-off, we introduce the
following steps:

1. Pick Motion Plan Execution: To execute the motion plan for
the pick operation, the robotic arm needs to go through three
poses: the pre-grasp, grasp, and post-grasp poses. Initially,
the robot moves from its initial pose to the pre-grasp pose.
These steps are critical because it allows the robot to position
the end-effector near the tool without any collision with its
geometry. Next, the robot approaches the tool at the proper
location and closes the gripper to grasp the object. Since
we are picking the object from a flat table in this example,
the robot approaches it from the top. After approaching the
object, the robot pauses for two to three seconds. This pause
allows the vacuum on the soft fingertip to let the granular
jamming finger conform to the shape of the tool correctly,
ensuring a firm grasp on the object. Once the robot has a
firm grasp on the object, it retreats in the opposite direction
of the approach vector. The motion planning steps for the
pick operation are illustrated in Fig. 10.

2. In-hand Angle Detection: To ensure the safety of human-
robot interaction during tool hand-off, the robot must detect
any potential tool rotation. To enable accurate detection of
the tool angle during hand-off execution, the system utilizes
an RGB camera mounted on the robot’s base link to facilitate
the detection process. If the angle exceeds a threshold of 45
degrees, the robot aborts the grasp. If the rotation is less than
45 degrees, the robot reorient the tool’s handle towards the
human.
To accurately determine the angle of the tool while in the
robot’s hand, an angle detection algorithm is used on an
RGB image. Initially, we considered a method of select-
ing a region of interest and drawing a bounding box around
the tool using contour detection. However, this method has
limitations due to the need for the robot to manually show
the camera the tool’s orientation and the potential for noise
and background interference in the RGB image.
To overcome these limitations, we train a deep neural net-
work based on Mask RCNN using an image dataset [36]
of the robot holding mechanical tools [37]. This approach
provides a more robust mask on the region of interest, mak-
ing angle detection more accurate. The size of the dataset
is not critical to the accuracy of the model output, as only
the orientation of the tool needs to be calculated. The entire
process is illustrated in Fig. 11.

3. Human Hand Gesture Recognition: Preemptive releasing
can lead to an unsafe handover, so the robot must confirm
that the human has a firm grasp on the tool before open-
ing the gripper. To achieve this, we implemented a gesture
recognition framework using an Oak-D camera to give the
robot feedback on the human hands. Naturally, when a hu-
man grasps the tool, the hand is prone to make a fist. An
example of the framework’s execution is shown in Fig. 12.
Then, the system recognizes the fist gesture to confirm that
the human has grasped an object. The system reads the ges-



FIGURE 8: Example of taxonomy based on the geometry.

FIGURE 9: Diagram showing the sequence of steps taken to ensure safe grasp planning on the tool end of the hammer.

ture for three seconds before releasing the gripper for a safe
hand-off to prevent faulty detection. Furthermore, suppose
the human collaborator believes that the robot performed a
dangerous hand-off due to faulty tool end detection. In that
case, the human agent can show open palms to signal a stop.
The robot is equipped to detect this intervention and will
place the tool back on the table, relearn the affordance of
the tool, and replan the hand-off, thereby ensuring a safer
handover.

7 RESULTS
The previous sections presented testing to confirm the robustness
of each component of our proposed system. In this section, we
describe our testing process of the full tool handover system. To
validate a safe tool handover system, we conducted a compre-
hensive series of experiments on multiple objects. We prepared
five sets of tools and ran 30 iterations on diverse tools to evalu-
ate the percentage of safe handovers achieved. For a handover to
be considered successful, it must have been completed without
any collisions during the planning and execution phase, and the

tool must have remained securely gripped by the robotic gripper
without slipping. Additionally, the handle-end of the object must
have been oriented correctly towards the human for the safety
criteria to have been met. Finally, the robot should know when
to let go of the tool, coordinating for optimal safe tool handover.

All 30 iterations of the handover met the safety criteria with-
out any violations. The success of our system was partly at-
tributed to the use of a specialized gripper designed for irregu-
lar objects, which prevented any in-hand rotation of the tool and
eliminated the need for angle detection contingency handling.
This ensured that the tool remained stable and secure during the
handover process. Examples of grasps that occurred during the
experiment are shown in Fig. 13, and the safe handover pipeline
working on various tools is demonstrated in Fig. 14

Our previous testing did not experience any failures, and we
were unable to validate the contingency handling aspect of our
approach. To address this, we introduce failures to validate the
system’s performance for different contingencies. We performed
multiple real-robot case studies to test how effectively the
system can handle contingencies and prevent unsafe situations.
Overall, these tests allowed us to identify any weaknesses and



FIGURE 10: Sequential pick process which starts from the initial pose
to the retreat position with tool in hand.

refine our feedback system to ensure its reliability in preventing
dangerous situations and providing effective assistance to users.

Case 1. The robot successfully grasps the object, yet results in
in-hand rotation under the 45-degree threshold set by the system.
Hence, the robot recognizes that it is a viable grasp for transport
and hand-off but reorients the tool towards the human agent to
ensure that the handle side is maximized towards the human
for the safe hand-off. The remaining procedure is the same as
before. Fig. 15. shows the demonstration of this case.

Case 2. The robot grasps the tool unsuccessfully, and the in-
hand rotation is bigger than 45 degrees. In this case, the camera
successfully captures the rotation angle and gives feedback
to the planner that the robot should place the object back on
the table and replan it for another grasp. Fig. 16. shows the
demonstration of this case.

Case 3. Another contingency introduced to the system is the false
detection of the tool end. We assumed the robot had grasped
the tool by the handle or incurred collision while executing the
motion plan. Then, the human shows the palm as an intervention,

FIGURE 11: Mask generated from trained Mask RCNN.

FIGURE 12: The system recognizes human gestures by detecting the
fist for three seconds to confirm a firm grip on the tool, as shown in the
top figure. The bottom figure shows the human intervention of the robot
to stop the handover under dangerous circumstances.

and the robot places the tool on the table. And the robot tries to
detect the tool end and replans a safe grasp. Fig. 17. shows the
demonstration of this case.

8 CONCLUSIONS
Our proposed system aims to enhance the safety of tool handover
in manufacturing settings. We have designed the system to in-
clude essential components, including tool end detection, stable



FIGURE 13: Examples of various hammer grasps generated from ex-
periments.

FIGURE 14: Handover pipeline working on various mechanical tools.
It is worth noting that the mallet has a thick geometry and generates oc-
clusion on the bottom part of the point cloud. Despite the occluded point
cloud, the robot can still plan a secure grasp, ensuring a safe handover
of the tool.

FIGURE 15: Demonstration of case 1. The robot reorients the tool if
the in-hand angle is under 45 degrees.

FIGURE 16: Demonstration of case 2. The robot puts down the tool
and replans if the in-hand angle is over 45 degrees.

FIGURE 17: Demonstration of case 3. The robot puts down the tool
and replans when the human collaborator intervenes.

grasping, grasp stability feedback, and safe release of the tool.
We have shown that a specialized hybrid gripper can safely and
effectively pick up various tools by the tool end. The robot em-
ploys deep learning to detect the tool end and plan the grasp,
thereby orienting the handle of the tool towards the human. Fur-
thermore, our system incorporates vision feedback from cameras
to ensure safe tool handover. We have demonstrated the system’s
ability to hand over a wide range of tools safely. Each component
of the system effectively assists the robot in ensuring a secure
handover process. We have also tested the system’s capability to
handle contingencies that could arise during the handover. Our
results suggest the proposed system is a promising solution for
safe human-robot collaboration in mechanical tool handover ap-
plications. However, we acknowledge that our system requires
multiple models to detect tool ends of different tools. To address
this issue, our future work will explore a universal tool end de-
tector, ensuring safe handover for a wider variety of tools.
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