
Using Large Language Models to Generate and Apply Contingency
Handling Procedures in Collaborative Assembly Applications

Jeon Ho Kang1, Neel Dhanaraj1, Siddhant Wadaskar1, and Satyandra K. Gupta1

Abstract— In manufacturing, minimizing operational delays
is crucial for efficiency and resilience. Therefore, efficiently
handling contingencies is essential in human-robot teams work-
ing on assembly (i.e., collaborative assembly) applications. This
paper introduces a novel approach to generating contingency
handling procedures by leveraging recent advances in Large
Language Models (LMMs). Our approach uses LLMs to update
the required tasks in hierarchical task networks (HTNs) to han-
dle contingencies. The results demonstrate that our approach
can handle various contingencies in assembly applications and
minimize the impact on the assembly completion time.

I. INTRODUCTION

There is a significant interest in automating assembly opera-
tions to improve human productivity and reduce the need for
humans to perform ergonomically challenging tasks. Many
assembly operations are complex and, therefore, cannot be
completely automated. Humans and robots have comple-
mentary strengths. One solution to improve automation on
assembly tasks is to deploy human and robot teams. Humans
can work on tasks that require a high level of dexterity, and
robots can perform routine tasks.

Recently, several advances have been made in robotic
manipulators that make them safer for humans. These ad-
vances are enabling the development of collaborative work
cells, where humans and robots can work in close proximity.
Such collaborative cells are gaining popularity for assembly
applications.

Hierarchical Task Networks (HTN) can be used to rep-
resent complex plans. Mixed Integer Linear Programming
(MILPs) can be used to generate the optimal task sequencing
and allocations for multi-agent teams using the information
available in HTNs. In mass-production applications, robots
are currently utilized for simple assembly tasks. Extensive
testing and custom fixtures are used to reduce the uncer-
tainty to the maximum possible extent and eliminate the
possibility of task execution failures. Unfortunately, these
strategies cannot be utilized in high-mix applications where
assemblies change frequently. Contingency situations created
by task execution failures occur more frequently in high-mix
manufacturing because of the high variability in the tasks
carried out in such applications. Figure 1 shows an example
of a contingency where a screw-driving operation has failed
and will require an intervention.

Addressing contingencies requires adjusting HTNs by
altering tasks and changing available resources. Once these
modifications are done, a new task allocation and schedule

1Viterbi School of Engineering, University of Southern
California, CA USA {jeonhoka, dhanaraj, wadaskar,
guptask}@usc.edu

Fig. 1: Example of an ATV assembly cell. The image depicts a
contingency scenario where the screwing operation fails due to a
jammed screw.

can be generated. Only relying on humans to identify and
handle tasks and adjusting HTNs may lead to long delays in
the makespan for the tasks for the following reasons. Firstly,
human experts are not always available for intervention
within the cell. Having a human constantly idle, waiting for
contingencies, is an inefficient use of resources. Furthermore,
expecting every available human to possess the expertise to
modify the HTN may not be realistic. Hence, it is important
to reduce the amount of expertise needed for humans and
automate handling contingencies that are commonly encoun-
tered in manufacturing so that only a limited number of
contingencies will require human intervention.

In this paper, we focus on both efficiency and autonomy
when addressing contingencies within multi-agent manufac-
turing assembly cells. Our key contributions are threefold: 1)
introduce a formulation of contingency handling procedures
that refines tasks and update the HTN to recover from contin-
gencies, 2) use a Large Language Model (LLM) to generate
procedures for handling contingencies that are similar to
contingencies seen before, and 3) use LLM to convert human
expert directives into contingency handling procedures.

II. RELATED WORKS

Contingency-Aware Task Planning Extensive literature ex-
ists on optimal task planning for multi-robot cells [1]–[4].
These approaches generally solve the task planning problem
using methods like heuristic search [5]–[9], hierarchical
task planning [10]–[12], mixed integer programs [13]–[17],
genetic algorithms [18], and auction-based methods [19],
[20] to find optimal task allocations. Recently, mixed integer
linear program formulations have been used for manufac-
turing domains due to the availability of powerful open-
source solvers [15], motivating our work to take advantage
of these new methods. New advances in machine learning



techniques further speed up these approaches, making them
strong candidates for optimizing assembly makespan [21].
However, the aforementioned methods require significant
engineering and implementation of domain knowledge.

Uncertainty in the robots, tasks, and environment [22],
[23], especially in high-mix, low-volume manufacturing
applications [24], [25], can lead to failures/contingencies.
If these contingencies can be modeled, then they can be
proactively managed [26]–[30]. This area of research is
being investigated by the multi-agent task allocation [31],
stochastic programming [32], and multi-agent reinforcement
community [33]. Contingencies that cannot be modeled and
predicted require reactive contingency management or failure
recovery. This is a new field of research in both low-level
task execution correction and high-level plan repair [34],
[35]. High-level plan repair is particularly difficult to address
due to the need for the robot to understand and reason over
how to address the failure. This has spurred research into
developing an ontology for failure representation in man-
ufacturing environments and utilizing semantic information
behind robot task failures [36], [37].
LLM Based Planning Recent advancements in LLM have
fostered a significant interest in the robotics community
[38], [39]. Its application for solving planning problems has
proven to be useful. However, one of the major challenges
is prompting the LLM to yield the desired task plan, a topic
that has garnered significant attention across various domains
[40]–[46]. A key focus area has been the reasoning and
abstraction of high-level tasks into sub-tasks. [47]–[54].

Using LLM in isolation presents difficulties when direct-
ing the generated tasks to agents. Despite refined prompting
techniques, the generated tasks may be infeasible. This chal-
lenge has led to investigations into the significance of envi-
ronment feedback and awareness for failure-aware planning,
as highlighted by [52]. As a result, numerous researchers
have integrated LLM with diverse approaches. One notable
method involves language-conditioned reinforcement learn-
ing, which aims to bifurcate skill learning from language
grounding through an intermediary semantic representation,
as discussed by [55].

Additionally, with success in generating code with LLMs
[56], many works explore utilizing LLM for generating code
tailored for agent task execution. For instance, [52], [54]
employs APIs to yield a series of actions for routine tasks
within a virtual home environment. Close to our work is
[57], which harnesses the hierarchical tasks to decompose
tasks into multiple steps. However, manufacturing scenarios
necessitate optimal task sequencing. Directly generating al-
terations to these task sequences via LLM does not guarantee
an optimal outcome. Therefore, we employ LLM to modify
the task representation within the HTN, and subsequently, an
optimizer determines the optimal task schedule.

III. PROBLEM FORMULATION
Background: We use an HTN representation that accommo-
dates sequential, independent, and parallel task relationships
as formulated in [14]. The task network is instantiated with
the root node τroot representing the overall task set. The leaf

nodes τatomic are the atomic tasks that need to be executed
in the manufacturing task. Between τroot and τatomic are sub-
tasks, τsub, which serve to describe a relationship constraint
among child nodes. τsub sequential dictates that task child nodes
are executed sequentially from left to right. This mirrors the
ordering constraints commonly found in assembly processes.
τsub independent allows for individual execution of tasks with-
out any specific order. Lastly, τsub parallel allows agents to
perform tasks concurrently.

Furthermore, we define a resource model describing the
state of both the parts and agents within the cell. Each
task has agent and/or part requirements. These resources are
characterized by specific states, such as when an agent is
unavailable or a part is missing. We define contingency as
any alteration in resource model states and possible action-
level disruptions like motion execution contingencies.

Let H denote a Hierarchical Task Network and R represent
the associated resource model. We define a task planner,
O(H,R) which generates a sequence S of task agent allo-
cations A j ↔ τi . This assignment links a task τi ∈H to an
agent Ai ∈R. The outcome of this assignment has an associ-
ated total duration to complete all tasks, or makespan t. The
overarching goal is to construct a framework that addresses a
variety of contingencies, F, and generate a computationally
interpretable contingency handling procedure, α .
Problem Statement: Consider a scenario where F requires
modifications within a system. For example, F could result
in a change of H or state for R. These changes might arise
from the altered availability of an agent, Ai, a defect in a
specific part, P, or a failure in executing τatomic. To resolve
these disruptions, we need a contingency handling procedure,
α in order to return to normal operation. The new recovery
task set τα ∈ α is designed to revise H according to the
updated status of R and τi. When our system applies α to
our initial H, we get a new HTN, H′, resource model, R′, and
an adjusted task set, (τ,τα)∈ τ’. Then, O′(H′,R′) generates
a new task sequence with an associated makespan t ′.

We also consider tα
gen, the time required to generate α , and

tα
exec, the time needed to incorporate α by adjusting H such

that the new recovery tasks are attached to the best τsub.
Therefore, the efficacy of α depends tα = ∑duration(ταi)
which directly impacts the new total makespan t ′. The
objective of this work is to narrow the gap between t ′ and t
by generating a near-optimal α that balances efficiency and
effectiveness. In addition, we need to generate a α that leads
to minimizing both tα

exec and tα
gen.

Overview of Approach: We present a methodology that
employs a contingency manager to modify and supplement
tasks in the existing H. This system, illustrated in Figure
2, begins with an executor that directs robots to carry out a
predetermined task sequence, S.

During execution, disruptions from F can arise. If detected
by the manufacturing cell monitor, the contingency process
is initiated. We initially attempt to use LLM for new α

generation by using existing contingency handling proce-
dures as prompts, with the specifics detailed in Section V. A
human expert then reviews these edits for feasibility. Once



Fig. 2: Overview of the system architecture

validated, the edits are assimilated into the system and saved
in a handling procedure repository. The repository enhances
the predetermined handling procedure and the example set,
reducing future human interventions.

There are instances where the code-to-code LLM’s sug-
gested α might be infeasible. In these cases, we lean
on natural language instructions from human experts. The
language-to-code LLM then translates these instructions into
a computational α , avoiding the need for further program-
ming. Details of the system can be found in Section VI.
Also, integration of α into H using established procedures is
found in Section IV. After the integration, S′ is computed by
the task scheduler, aiming to minimize makespan, preserving
optimally while incorporating τi, with τα .

IV. REFORMULATING HTN AND INCORPORATING TASKS
TO RECOVER FROM CONTINGENCIES

We start with essential primitive to edit H and give the
LLM and humans a way to formulate α . We use these
class functions to enable the code-to-code LLM to define
α as discussed in Section V, as well as to make a fair
comparison of tα

gen between humans and LLMs. Let us
assume we have an optimal contingency handling procedure,
α . How our system generates α will be discussed in Section
V and VI. To incorporate α while minimizing tα

exec, we need
steps to restructure H so that α can be integrated with
other existing tasks. Our method identifies the least number
of the required disassembly tasks across multiple handling
procedures. Furthermore, our method determines α’s optimal
placement in H and identifies the best sequence of recovery
tasks. Further explanations are provided in Section IV-B.

A. Primitives to Define Recovery Tasks
In the AlterTree class, we define the following three prim-
itives to construct the expression α: add node(task parent,
task child, Agent), add agent model(Task, Agent, Duration),
set agent state(Agent, Availability). The first two primitives
enable users to add task nodes and associated agent-task
duration cost models to the task nodes. Additionally, we have
a function to set the agent’s operational state as available

Fig. 3: Step by step strategy for incorporating α into HTN.

or unavailable. Upon setting the agent state unavailable, the
program sets the tasks and their sequential dependencies
linked to inactive agents as infeasible. Subsequently, when
the solver generates a schedule, it will disregard those tasks,
allowing functioning agents to resume other tasks while
the assigned agents handle contingency. This function is
necessary because, in manufacturing assembly, it is common
for agents to become non-functional. Such situations can
cause an assembly cell to come to a standstill, leading
other functioning agents to be sidelined, extending t. For
example, suppose a robot specialized in screw-driving is
currently under maintenance. In that case, other agents can
still perform tasks like picking up and inserting other wheels
until the screw-driving robot is operational.

B. Incorporation of Recovery Tasks in HTN
Figure 3 illustrates the procedures for implementing these
steps. Before incorporating the α , the contingency manager
first splits the parent of the contingency task τF into 1)
the contingency operation, which includes the failed task
node and the corresponding recovery tasks and 2) the regular
operation which are the remaining tasks in τsub. It then
appends the failed task and its associated α to the created
τsub so that we allow the scheduler to incorporate recovery
tasks and contingency tasks.

Additionally, addressing a contingency may necessitate a
disassembly process. Therefore, the contingency manager
undertakes the following steps to generate the necessary
disassembly procedures for the malfunctioning component.



1) Check for tasks that have been completed. 2) Determine
which completed tasks are sequentially bound within the
HTN. 3) Invert the operation sequence to identify the coun-
terpart disassembly process.4) Add these disassembly pro-
cesses to the disassembly task in α . 5) Set these operations
incomplete to be redone after contingency is resolved so that
it is rescheduled in the new plan.

When multiple Fi occurs, and two or more contingencies
require a similar disassembly process, generating an efficient
contingency handling procedure becomes essential. Consider
a case in ATV assembly where an engine leak and a crack
in the outer main body frame coincide during assembly. A
naive approach might generate and schedule the two α se-
quentially. This approach may lead the system first to replace
the outer frame and disassemble the engine, leading to more
wasted time. In contrast, we design our system to prioritize
the engine recovery task by following the steps: 1) Determine
if there are redundant tasks in the set of contingency handling
procedures. 2) Examine the task sequence by first analyzing
which tasks are executed in the original H. 3)Eliminate the
disassembly tasks associated with later task assembly steps.

V. UTILIZING EXISTING CONTINGENCY HANDLING
PROCEDURES TO GENERATE NEW CONTINGENCY

HANDLING PROCEDURES

To reduce reliance on human experts, we generate α using
a code-to-code LLM (i.e., LLMs that can generate new code
based on the existing code) by providing the context to
formulate effective α . We employ the GPT 3.5 turbo as our
backbone architecture to generate the contingency handling
procedure α . We configure the GPT with the code for
three HTN primitives under the Pythonic class AlterTree, as
discussed in Section IV-A. We annotate each primitive with
comments describing its functionality. We further supplement
GPT with the current HTN’s tree data structure, failed task
and agent, details about the agents in the cell, and inherent
task constraints in the text. For instance, constraints like
”only human agents H1 and H2 and mobile platform agents
m1 and m2 can move” ensure that the handling procedure
excludes infeasible task assignments. We also feed the model
exemplary handling procedure set {α1,α2,α3...}. The system
architecture is given in Figure 4. The final input to GPT is a
contingency definition such as ”recovery screw not found”
structured as an empty function, prompting it to construct
the corresponding α for the specified F.

Figure 5 shows the example output for this approach.
In the example α , the LLM uses the HTN primitives by
referencing the comments and the functions within the
AlterTree class. This approach ensures that GPT applies
the correct syntax and function arguments to the new α .
It further references the specific information about the cell,
allowing it to assess the capabilities of agents and evaluate
the current status of the H. Moreover, it draws from the past
scenarios in the exemplary α , which informs the appropriate
recovery tasks for different contingencies. When presented
with an empty function, the model adeptly fills it in. An
example of this is the ’screw not found’ scenario. In this

Fig. 4: The system diagram provides a detailed view of the
prompting technique to generate a contingency handling procedure.

instance, the model modifies ’recovery engine not found’
to craft ’recovery screw not found,’ highlighting that both
tasks revolve around notifying the cell’s monitor to source
replacements for absent components.

Importantly, beyond the provided prompt, GPT leverages
its broad world knowledge and manufacturing data from its
pre-trained data set to devise tasks tailored for managing
particular contingencies. As showcased in Figure 5, there is
a nuanced distinction in its approach between the engine
and screw contingencies. While the contingency handling
procedure provided in the example for the engine missing
scenario directly notifies the absence, the screw missing situ-
ation triggers a more intricate process. Here, GPT introduces
two additional tasks to search for the screw and scan the
workspace for any missing screws. This capability emerges
from GPT’s understanding of screw-related textual informa-
tion and its inherent physical properties. Such knowledge
equips the model to grasp potential issues stemming from a
missing screw in the workspace. Drawing from real-world
contexts, an engine, being a more conspicuous component,
might not necessitate a workspace search when missing.
Usually, the appropriate response involves requesting the part
and then waiting for its arrival. Conversely, for a missing
screw, the model instructs the agent to scan the workspace to
determine if a stock of screws is available to refill the screw
feeder. Furthermore, GPT exhibits a capability for organizing
tasks. It automatically groups two atomic tasks of the same
parent task under a shared parent task.



Fig. 5: Example generation of contingency handling procedure
prompted in Figure 4

Fig. 6: For this module, human instruction in natural language is
added to convert it to program-level modification to HTN.

VI. TRANSLATING HUMAN EXPERT INSTRUCTIONS INTO
CONTINGENCY HANDLING PROCEDURES

When the method described in Section V fails to generate
α , we seek human help. The system architecture of our
implementation is depicted in Figure 6. As done in Section
V, we supply the GPT 3.5 turbo with a similar prompt. The
distinguishing factor is the final prompt: humans describe the
contingency handling procedure in natural language, which
the language-to-code LLM then translates into the executable
α .

Figure 7 presents a contingency handling procedure gener-
ated using the discussed method. As illustrated in Section V,
GPT derives insights from the primitives, cell information,
and example α . However, there is a notable difference in
its method for identifying node names. It leverages human-
provided natural language instructions to reconstruct α in
code format. A clear demonstration of this is the comparison
between task id, ”recovery move away”, and the directive
”r1 will slowly move away from the platform.”.

A closer examination of Figure 7 reveals GPT’s ability
to make inferences. It determines which agent undertakes
which tasks, even without explicit indications. For instance,
while the natural language refers to a ’human’ agent, GPT
translates it, adhering to the correct syntax, and uses the
identifier ”H.” As illustrated, all designated agents are cor-
rectly assigned to execute the recovery tasks, especially those
contending with the contingency, r1. Additionally, in the
absence of specific data on the duration of recovery tasks,

Fig. 7: Example conversion from natural language prompt in Figure
6 to code

Fig. 8: State of ATV assembly composed of 17 parts. Contingency
is detected in the 6th part of the assembly.

GPT references the HTN and example α to determine and
fill in the probable time steps needed.

VII. RESULTS
A. Testbed
We assess our method in the All-Terrain-Vehicle (ATV)
assembly cell producing one ATV. The t for initial task
allocation without contingency is 800 seconds. There are 17
assembly components in the overall cell. The cell comprises
12 stations, each tasked with affixing different parts to the
main chassis and one contingency cell for disassembly. The
contingency cell aims to dismantle essential components
within the assembly, allowing access to the faulty part.

Our HTN includes 24 agents, comprising eight humans,
15 robots, and a single mobile platform. Within this network,
there are 148 task nodes and 94 leaf nodes. We classify
contingencies into five distinct groups: agent-related, task-
specific, motion planning, part-specific, and miscellaneous.
For each category, we present ten scenarios, serving as test
cases to evaluate the efficacy of our proposed approach.

B. Large Language Model for Adaptive Contingency Han-
dling Procedures

We compare our method with a benchmark that directly
generates tree data structure in Python dictionary format.
During our experiment, we maintain consistency between
the two prompting techniques, ensuring they share the same
context regarding the cell and the HTN. We initially provide
the same set of exemplary α for nine identical contingencies
but presented in two distinct formats.

Figure 9 shows differences in success rates between the
two methods. As detailed in Section VII-A, we produce α

for ten distinct contingencies in each category. Our evaluation
metric defines success based on the accuracy and executabil-
ity of the generated α . Any procedure that cannot be utilized
or executed is deemed unsuccessful. We then calculate the
success rate as a percentage.

From the comparison, we identified that generating raw
tree data structure is more prone to making syntactical errors
because the data structure is structurally more complex with



various parenthesis and spaces, which often leads to a more
complicated interpretation of the context of the assembly cell,
thereby reducing the likelihood of producing executable α .

Fig. 9: Figure illustrates a comparison of success rates in generating
handling procedures between two methods. It provides a summary
of their relative efficacy, highlighting differences in their ability to
create actionable and accurate recovery tasks.

C. Contingency Handling Procedure Generation Time
Comparison

We benchmark our approach against the traditional method
where α is formulated through manual programming by
humans. We assume that human starts from the skeleton code
and tries to minimize tα

gen. If the code-to-code LLM generates
an infeasible task, we introduce humans to provide natural
language instruction to devise α as discussed in Section VI
and add it to the delay introduced.

Table I shows the comparative analysis of tα
gen between

LLM generated and the benchmark. Our method had a
distinct advantage in addressing the first four types of con-
tingencies. There was a minimal difference in miscellaneous
contingencies because LLM, in this context faced challenges
in generating an accurate α on its initial attempt.

This observation aligns with our findings from Section
VII-B. Miscellaneous contingencies generally had the lowest
success rates due to their inherent uncertainties and the wide
range of contexts. However, our method still showed some
advantages even for those contingencies that required human
intervention because, when the LLM relied on expert natural
language instructions, it was generally more accessible for
experts to articulate contingency handling tasks in natural
language. Humans typically took longer in programming
handling procedures, resulting in comparable tα

gen.

Introduced tαgen compared to t
Category Human generated LLM Generated
Agent +0.10t ±0.03t +0.01t ±0.01t
Task +0.10t ±0.03t +0.02t ±0.03t
Motion +0.12t ±0.03t +0.03t ±0.04t
Part +0.12t ±0.03t +0.03t ±0.03t
Miscellaneous +0.08t ±0.02t +0.05t ±0.04t

TABLE I: Our analysis shows variability in tα
gen, which stems from

the differences between simple and complex contingencies. This
observation holds regardless of the method.

D. Makespan Improvement Analysis
Figure 10 compares t ′ between human-generated α and our
method. The new makespan comprises tα

gen and the execution

Fig. 10: The figure illustrates the disparity in makespan between the
conventional human-programmed approach and the LLM method.
A lognormal distribution is employed to account for potential
delays—up to a maximum of 10 minutes—owing to the availability
of human programmers.

time of the recovery tasks. Consistent with our earlier results,
the miscellaneous contingency category exhibits a minimal
difference in makespan between the two approaches and
heightened makespan because of the considerable delay time
in tα

gen, coupled with idle time stemming from unanticipated
circumstances. Furthermore, we incorporate delay models
to account for the time required for programmers to be
available, assuming a maximum delay of 10 minutes.

The makespan differences are narrower for part con-
tingencies, mainly due to the consistent waiting time for
replacement parts, irrespective of the method used. However,
our method significantly reduces the makespan for other
types of contingencies because our handling procedures often
sidestep the need for human intervention, leveraging agent-
level actions like ”retreat” and ”re-plan.”

E. Case Study for Complex Contingency Recovery
Figure 8 b) depicts a state of ATV during contingency within
an ATV assembly. As the upper cover assembly progresses,
an agent detects a defective engine and notifies the cell
monitor. The contingency handling procedure generated by
the LLM described in Section V includes 11 nodes: three
parent nodes, five undo tasks, and three re-do tasks. Utilizing
the generated α , the total time to complete the assembly
amounted to 915 seconds, resulting in a 14% increase from
the nominal makespan. If we were to wait for a human to
modify the HTN, then this time would be a lot longer.

VIII. CONCLUSIONS
We have demonstrated that contingency handling procedures
can be automatically generated using LLMs, drawing infor-
mation from procedures for similar contingencies. LLMs also
efficiently translate human instructions in natural language
into contingency handling procedures. LLMs encapsulate a
common understanding of assembly parts and tasks, enabling
them to fill in missing information and establish sequencing
constraints. Upon formulating the contingency procedure, the
LLM modifies the task representation. This modification in
representation space ensures that when the task scheduler
sequences tasks, it addresses the issue and maintains se-
quence optimality. As a future direction, we aim to delve into
prompt efficiency, exploring the minimal prompts necessary
for LLMs to yield comparable results.



REFERENCES

[1] H. L. Kwa, J. Leong Kit, and R. Bouffanais, “Balancing collective
exploration and exploitation in multi-agent and multi-robot systems:
A review,” Frontiers in Robotics and AI, vol. 8, p. 771520, 2022.

[2] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[3] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot
interaction in industrial collaborative robotics: a literature review of
the decade 2008–2017,” Advanced Robotics, vol. 33, no. 15-16, pp.
764–799, 2019.

[4] H. Chakraa, F. Guérin, E. Leclercq, and D. Lefebvre, “Optimization
techniques for multi-robot task allocation problems: Review on the
state-of-the-art,” Robotics and Autonomous Systems, p. 104492, 2023.

[5] J. Hoffmann, “Ff: The fast-forward planning system,” AI magazine,
vol. 22, no. 3, pp. 57–57, 2001.

[6] D. Bryce and S. Kambhampati, “A tutorial on planning graph based
reachability heuristics,” AI Magazine, vol. 28, no. 1, pp. 47–47, 2007.

[7] Z. Li, A. V. Barenji, J. Jiang, R. Y. Zhong, and G. Xu, “A mechanism
for scheduling multi robot intelligent warehouse system face with
dynamic demand,” Journal of Intelligent Manufacturing, vol. 31, pp.
469–480, 2020.

[8] V. Tereshchuk, N. Bykov, S. Pedigo, S. Devasia, and A. G. Banerjee,
“A scheduling method for multi-robot assembly of aircraft struc-
tures with soft task precedence constraints,” Robotics and Computer-
Integrated Manufacturing, vol. 71, p. 102154, 2021.

[9] Y. Zhang and L. E. Parker, “Multi-robot task scheduling,” in 2013
IEEE international conference on robotics and automation. IEEE,
2013, pp. 2992–2998.

[10] A. R. Mosteo and L. Montano, “Simulated annealing for multi-robot
hierarchical task allocation with flexible constraints and objective
functions,” in Workshop on network robot systems: toward intelligent
robotic systems integrated with environments. int. conf. on intelligent
robots and systems. Citeseer, 2006.

[11] S. Bae, S. Joo, J. Choi, J. Pyo, H. Park, and T. Kuc, “Semantic
knowledge-based hierarchical planning approach for multi-robot sys-
tems,” Electronics, vol. 12, no. 9, p. 2131, 2023.

[12] J. Munoz-Morera, F. Alarcon, I. Maza, and A. Ollero, “Combining a
hierarchical task network planner with a constraint satisfaction solver
for assembly operations involving routing problems in a multi-robot
context,” International Journal of Advanced Robotic Systems, vol. 15,
no. 3, p. 1729881418782088, 2018.

[13] M. Gombolay, R. Wilcox, and J. Shah, “Fast scheduling of multi-
robot teams with temporospatial constraints,” in Robotics: Science and
Systems Foundation, 2013.

[14] Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task
planning based on a hierarchical task model,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1136–1143, 2021.

[15] A. Ham and M.-J. Park, “Human–robot task allocation and scheduling:
Boeing 777 case study,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1256–1263, 2021.

[16] S. Fatemi-Anaraki, R. Tavakkoli-Moghaddam, M. Foumani, and
B. Vahedi-Nouri, “Scheduling of multi-robot job shop systems in dy-
namic environments: mixed-integer linear programming and constraint
programming approaches,” Omega, vol. 115, p. 102770, 2023.

[17] D. Guo, “Fast scheduling of human-robot teams collaboration on
synchronised production-logistics tasks in aircraft assembly,” Robotics
and Computer-Integrated Manufacturing, vol. 85, p. 102620, 2024.

[18] C. Liu and A. Kroll, “A centralized multi-robot task allocation for
industrial plant inspection by using a* and genetic algorithms,” in Arti-
ficial Intelligence and Soft Computing: 11th International Conference,
ICAISC 2012, Zakopane, Poland, April 29-May 3, 2012, Proceedings,
Part II 11. Springer, 2012, pp. 466–474.

[19] M. Badreldin, A. Hussein, and A. Khamis, “A comparative study
between optimization and market-based approaches to multi-robot task
allocation,” Advances in Artificial Intelligence, vol. 2013, pp. 12–12,
2013.

[20] J. G. Martin, J. R. D. Frejo, R. A. Garcı́a, and E. F. Camacho,
“Multi-robot task allocation problem with multiple nonlinear criteria
using branch and bound and genetic algorithms,” Intelligent Service
Robotics, vol. 14, no. 5, pp. 707–727, 2021.

[21] H. Aziz, A. Pal, A. Pourmiri, F. Ramezani, and B. Sims, “Task
allocation using a team of robots,” Current Robotics Reports, vol. 3,
no. 4, pp. 227–238, 2022.

[22] M. J. Matarić, G. S. Sukhatme, and E. H. Østergaard, “Multi-robot task
allocation in uncertain environments,” Autonomous Robots, vol. 14, pp.
255–263, 2003.

[23] L. Zhou and P. Tokekar, “Multi-robot coordination and planning in
uncertain and adversarial environments,” Current Robotics Reports,
vol. 2, pp. 147–157, 2021.

[24] N. Dhanaraj, R. Malhan, H. Nemlekar, S. Nikolaidis, and S. K. Gupta,
“Human-guided goal assignment to effectively manage workload for a
smart robotic assistant,” in 2022 31st IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). IEEE,
2022, pp. 1305–1312.

[25] J. Falco, K. Van Wyk, and K. Kimble, “Advances in robot technology
supporting low-volume/high-mix small part assembly operations,”
2022.

[26] N. Dhanaraj, S. V. Narayan, S. Nikolaidis, and S. K. Gupta,
“Contingency-aware task assignment and scheduling for human-robot
teams,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 5765–5771.

[27] S. Shriyam and S. K. Gupta, “Incorporation of contingency tasks in
task allocation for multirobot teams,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 17, no. 2, pp. 809–822, 2020.

[28] S. Shriyam, “Contingency handling in mission planning for multi-
robot teams,” Ph.D. dissertation, University of Southern California,
2019.

[29] S. Shriyam and S. K. Gupta, “Incorporating potential contingency
tasks in multi-robot mission planning,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
3709–3715.

[30] ——, “Task assignment and scheduling for mobile robot teams,” in In-
ternational Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, vol. 51807. American
Society of Mechanical Engineers, 2018, p. V05AT07A075.

[31] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and
J. Bohg, “Dynamic multi-robot task allocation under uncertainty and
temporal constraints,” Autonomous Robots, vol. 46, no. 1, pp. 231–247,
2022.

[32] A. Messing, J. Banfi, M. Stadler, E. Stump, H. Ravichandar, N. Roy,
and S. Hutchinson, “A sampling-based approach for heterogeneous
coalition scheduling with temporal uncertainty.”

[33] A. Wong, T. Bäck, A. V. Kononova, and A. Plaat, “Deep multiagent
reinforcement learning: Challenges and directions,” Artificial Intelli-
gence Review, vol. 56, no. 6, pp. 5023–5056, 2023.

[34] S. Reig, E. J. Carter, T. Fong, J. Forlizzi, and A. Steinfeld, “Flailing,
hailing, prevailing: Perceptions of multi-robot failure recovery strate-
gies,” in Proceedings of the 2021 ACM/IEEE International Conference
on Human-Robot Interaction, 2021, pp. 158–167.

[35] D. Das, S. Banerjee, and S. Chernova, “Explainable ai for robot
failures: Generating explanations that improve user assistance in
fault recovery,” in Proceedings of the 2021 ACM/IEEE International
Conference on Human-Robot Interaction, ser. HRI ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 351–360.
[Online]. Available: https://doi.org/10.1145/3434073.3444657

[36] K. Skarzynski, M. Stepniak, W. Bartyna, and S. Ambroszkiewicz, “A
generic ontology and recovery protocols for human–robot collabora-
tion systems,” in Communication and Intelligent Systems: Proceedings
of ICCIS 2021. Springer, 2022, pp. 973–987.

[37] S. Matsuoka and T. Sawaragi, “Recovery planning of industrial robots
based on semantic information of failures and time-dependent utility,”
Advanced Engineering Informatics, vol. 51, p. 101507, 2022.

[38] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Computing Surveys, 2021.

[39] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for
robotics: Design principles and model abilities,” Microsoft Auton. Syst.
Robot. Res, vol. 2, p. 20, 2023.

[40] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55,
no. 9, pp. 1–35, 2023.

[41] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

https://doi.org/10.1145/3434073.3444657


[42] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[43] A. Patel, B. Li, M. S. Rasooli, N. Constant, C. Raffel, and C. Callison-
Burch, “Bidirectional language models are also few-shot learners,”
arXiv preprint arXiv:2209.14500, 2022.

[44] M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji, L. B. Kristensen,
K. Darvish, A. Aspuru-Guzik, F. Shkurti, and A. Garg, “Errors are
useful prompts: Instruction guided task programming with verifier-
assisted iterative prompting,” arXiv preprint arXiv:2303.14100, 2023.

[45] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback, 2022,” URL
https://arxiv. org/abs/2203.02155, vol. 13, 2022.

[46] L. Reynolds and K. McDonell, “Prompt programming for large lan-
guage models: Beyond the few-shot paradigm,” in Extended Abstracts
of the 2021 CHI Conference on Human Factors in Computing Systems,
2021, pp. 1–7.

[47] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022, pp. 9118–9147.

[48] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[49] P. A. Jansen, “Visually-grounded planning without vision: Language
models infer detailed plans from high-level instructions,” arXiv
preprint arXiv:2009.14259, 2020.

[50] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A.
Huang, E. Akyürek, A. Anandkumar et al., “Pre-trained language mod-
els for interactive decision-making,” Advances in Neural Information
Processing Systems, vol. 35, pp. 31 199–31 212, 2022.

[51] R. Patel and E. Pavlick, “Mapping language models to grounded
conceptual spaces,” in International Conference on Learning Repre-
sentations, 2021.

[52] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: program genera-
tion for situated robot task planning using large language models,”
Autonomous Robots, pp. 1–14, 2023.

[53] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, “Translating
natural language to planning goals with large-language models,” arXiv
preprint arXiv:2302.05128, 2023.

[54] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani et al., “Socratic
models: Composing zero-shot multimodal reasoning with language,”
arXiv preprint arXiv:2204.00598, 2022.

[55] A. Akakzia, C. Colas, P.-Y. Oudeyer, M. Chetouani, and O. Sigaud,
“Grounding language to autonomously-acquired skills via goal gener-
ation,” arXiv preprint arXiv:2006.07185, 2020.

[56] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman et al.,
“Evaluating large language models trained on code,” arXiv preprint
arXiv:2107.03374, 2021.

[57] Y. Cao and C. Lee, “Robot behavior-tree-based task generation with
large language models,” arXiv preprint arXiv:2302.12927, 2023.


	Introduction
	Related Works
	Problem Formulation
	Reformulating HTN and Incorporating Tasks to Recover from Contingencies
	Primitives to Define Recovery Tasks
	Incorporation of Recovery Tasks in HTN

	Utilizing Existing Contingency Handling Procedures to Generate New Contingency Handling Procedures
	Translating Human Expert Instructions into Contingency Handling Procedures
	Results
	 Testbed
	Large Language Model for Adaptive Contingency Handling Procedures
	Contingency Handling Procedure Generation Time Comparison
	Makespan Improvement Analysis
	Case Study for Complex Contingency Recovery

	Conclusions
	References

