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Abstract— Diffusion-based policy learning frameworks excel
in learning diverse tasks and achieving high success rates.
However, in manufacturing settings, success rate alone is
insufficient for real-world deployment. Tasks must be executed
efficiently, minimizing idle time while maintaining precision.
Additionally, in assembly and disassembly settings, a single
scene often contains multiple task goals that need to be
completed—such as picking up an engine while simultaneously
securing a suspension—requiring the robot to reason over
multiple objectives within the same observation space. In
human-robot collaboration, enabling humans to specify task
preferences is crucial for flexible and intuitive interaction. In
this paper, we address two key challenges: (1) improving task
execution efficiency by structuring tasks into distinct sub-task
modes via language, and (2) enabling human operators to
select tasks using natural language commands. Additionally, we
introduce adaptive parameter selection framework and reliance
on different sensory modalities depending on these sub-task
modes. We evaluate our approach on the NIST Task Board, a
representative benchmark of real-world tasks where multiple
task goals exist within the same scene. Our method improves
execution speed by 57% and show 19% improvement in task
success rates. Demonstration videos are available at https:
//rros-lab.github.io/task-aware-diffusion/.

I. INTRODUCTION
For high-mix manufacturing applications, such as disas-
sembly for maintenance or recycling, automation remains
challenging due to the high variability of parts, precise
and force-sensitive manipulations, and frequently changing
task requirements. These settings, however, are well-suited
for human-robot collaboration, where robots can handle
repetitive physical operations—such as unplugging connec-
tors and extracting components—while humans can provide
oversight, perform inspections, or dynamically determine
disassembly sequences.

Recent advances in imitation learning, particularly dif-
fusion policies, have provided a promising approach to
enable robots to perform complex manipulations—such as
battery cell removal and enclosure disassembly—directly
from multi-modal human demonstrations (e.g., visual,
force/torque). These developments have brought collabora-
tive robots closer to practical deployment in dynamic, high-
mix manufacturing environments.

Despite recent successes, several drawbacks hinder the
adoption of diffusion policies for multi-task disassembly
problems. Typically, a diffusion policy is implemented as
an end-to-end model, trained on extensive datasets of high-
quality demonstrations, that directly maps raw sensory in-
puts to low-level actuator commands. While this approach
avoids explicitly specifying individual tasks (e.g., removing
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Fig. 1: Real-world manufacturing environments present robots with
complex scenes containing multiple potential tasks, such as remov-
ing RAM, SATA ports, power connectors, and more (left). In these
cases, the robot must be able to commit to a single task based on
external input, such as language. We demonstrate an example where
the robot selects the task of removing a wire from the motherboard
on the desktop (right).

a particular component) and their associated sub-tasks (e.g.,
approaching or grasping connectors), it introduces certain
limitations. Empirically, we found performance degradation
when demonstrations are suboptimal, particularly during
critical transitions between sub-tasks. Furthermore, end-to-
end policies often struggle when multiple tasks are simulta-
neously visible, as illustrated in Figure 1, causing ambigu-
ity and task-selection confusion. Although training separate
specialized diffusion models for each task could enhance
reliability, this approach rapidly becomes impractical as the
number of tasks increases due to increasing demonstration
acquisition costs. Additionally, human operators frequently
exhibit context-dependent preferences, prioritizing certain
tasks based on specific assembly scenarios. To effectively
capture preferences and clearly specify intended tasks, dif-
fusion policies would need to accept flexible task sequences
provided by human operators.

To address these challenges, we propose training a single
diffusion policy capable of handling a family of related
manipulation tasks, particularly those involving common task
types (e.g., unplugging various connectors) or similar scenes
(e.g., controller diagnostics). To clearly guide the robot
through specific tasks and associated sub-tasks, we condi-
tion the diffusion policy on natural language instructions
alongside visual and force inputs. Our key insight is that
many manufacturing applications inherently involve multiple
similar tasks, such as removing connectors of type A, B, or
C, each composed of intuitive sub-tasks like approaching,
grasping, rotating, and pulling. By explicitly incorporating
task and sub-task information, a single diffusion policy can
implicitly capture and leverage this underlying task struc-
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ture. This approach enables effective operation in multi-task
scenarios and provides human operators with the flexibility
to dynamically specify or adjust task sequences during de-
ployment. Furthermore, conditioning on sub-task information
facilitates precise signaling of task transitions, significantly
improving robotic system efficiency and adaptability in
multi-task manufacturing settings. Our contributions are the
following

1) We introduce a language-conditioned Diffusion Policy
framework for manufacturing disassembly, enabling
task selection within a single multi-task model.

2) We propose a task-context-aware, end-to-end policy
learning approach that enhances data efficiency and
reduces task execution time.

3) We propose a novel method for adaptively weighting
different sensory modalities based on the specific sub-
task the robot is performing, allowing dynamic reliance
on relevant modalities at different stages.

4) We validate the effectiveness of our approach through
experimental results and highlight the benefits of em-
ploying multi-task diffusion models for complex man-
ufacturing tasks.

II. RELATED WORKS

Behavior Cloning: Behavior cloning is an imitation learning
approach where a policy is learned by directly mimicking an
expert’s state-action pairs [1]. It has demonstrated remark-
able potential across various real-world robotic manipulation
tasks [2]–[7]. Transformer-based methods, such as Behavior
Transformers [8], have notably advanced sequential decision-
making by capturing long-range dependencies and the multi-
modal nature of expert demonstrations, mitigating the co-
variate shift inherent in traditional behavior cloning. Recent
implicit policy models [9]–[11] improve action representa-
tion, enabling smoother transitions and greater robustness in
task execution. Although these methods highlight the ability
of behavior cloning to simplify policy learning, they also
raise concerns about generalization to novel objects and
multi-modal tasks.
Diffusion Policy: Diffusion models are generative models
that learn to gradually denoise random noise into coherent
data samples [12], [13], and they have recently been applied
to robot policy generation. [14]–[16] obtained remarkable
performance by employing diffusion models to learn robot
trajectory and visuomotor policies for robotic manipulation
tasks. [17] further extended this line of work by incorporating
force feedback through a cross-attention mechanism, enhanc-
ing robustness in contact-rich tasks. Additionally, diffusion
policies have demonstrated state-of-the-art performance in
various robotic manipulation tasks, including object reorien-
tation, grasp synthesis, and precise tactile manipulation [18]–
[23]. Beyond manipulation, diffusion models have effectively
been used in imitation learning for general purpose agents
[24], [25]. However, many of these existing frameworks have
long task execution times, with a primary focus on task
success rather than execution efficiency. In this paper, we
aim to address this gap.

Language Guided Policy: Integrating natural language into
policy learning enables robots to follow human instruc-
tions and perform a variety of specified tasks in words,
such as using LLMs for higher-level decision-making and
reasoning in robotics [26]–[30]. Recent transformer-based
generalist robot policies have demonstrated enhanced ability
to interpret diverse natural language instructions by aligning
visual inputs and language-conditioned action primitives,
significantly improving generalization across manipulation
tasks described via language [31]. LLMs have also found
applications in policy learning [32], [33], where they facili-
tate the translation of natural language task descriptions into
reward functions and control objectives. Recent advances
in language-guided policy learning leverage large language
models and vision-language integration to bridge high-level
task descriptions and low-level control [34]–[36]. For exam-
ple, DISCO [37] employs vision-language-model-generated
keyframes to condition diffusion policies, while other works
demonstrate scalable skill acquisition through language-
guided planning [38].Furthermore,such methods have in-
spired natural language-guided human-robot collaboration
(HRC) applications [39], [40].

In manufacturing, the required tasks are relatively limited
compared to home applications. However, the ability to scale
to multiple task sets remains crucial. Therefore, we propose a
language-guided policy, following the approach in [37], but
specifically demonstrate its effectiveness in manufacturing
disassembly tasks on a real robot.

III. PRELIMINARIES
A. Problem Formulation
We aim to learn a multi-task policy π conditioned on the
observation Ot = {I,F, l} where I represents visual input,
F denotes force measurements, and l is a language-based
descriptor specifying the task. The language input l ∈ L
serves as a conditioning variable, informing the model about
the current task and its sub-tasks. Let Tp be the parent task,
which consists of a set of sub-tasks: Tp = {Tsi}n

i=1. Our
objective is to learn a policy π that generates a sequence of
actions at ∼ π(a|Ot) for real-world disassembly tasks. The
learned policy should minimize task execution time while
incorporating human preferences in task selection.

B. Diffusion Models
Diffusion models are probabilistic generative models that

approximate the data distribution p(x0) by introducing a
sequence of latent variables x1,x2, . . . ,xT , which are pro-
gressively noisier versions of the clean data x0. The forward
process assumes a Gaussian distribution, with the mean
centered around a scaled version of x0.

N(xt ;
√

ᾱtx0,(1− ᾱt)I) (1)

where ᾱt is the cumulative product of derived variance
schedule αt at t diffusion time step. The forward process
follows the Markov chain of the form

q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1) (2)



Fig. 2: Task Description in Text: We illustrate a sequence of parent tasks and sub-tasks present in our scenario. The robot receives textual
input and selects the appropriate task to perform. Within a single policy, it executes different unlocking skills tailored to each mechanism.
Our framework successfully adapts to various tasks, demonstrating a robust task selection capability and efficient sub-task mode switches.

Denoising Diffusion Probabilistic Model (DDPM) as one
popular denoising algorithm reverses the diffusion process
by

pθ (x0) =
∫

pθ (x0:T )dx1:T (3)

and pθ (x0:T ) takes the form of Markov chain

pθ (xT )
T

∏
t=1

p(t)
θ
(xt−1|xt) (4)

During the reverse process, the model learns to approx-
imate the data distribution p(x0). However, due to the
intractability of directly modeling the true posterior distri-
bution, diffusion models are typically trained by maximizing
the variational lower bound (ELBO). Under the assumption
that the reverse process follows a Gaussian distribution with
a fixed variance and a learnable mean function (as derived
in [13]), the training objective simplifies to:

L(εθ ) :=
T

∑
t=1

E
x0,ε

(t)
t
[||εθ (

√
αtx0 +

√
1−αtεt)− εt ||22] (5)

Recently, Denoising Diffusion Implicit Models (DDIM)
have introduced an alternative formulation to Denoising Dif-
fusion Probabilistic Models (DDPM), significantly reducing

the number of diffusion steps, which was a major bottleneck
for real-time control. Unlike DDPM, DDIM assumes a non-
Markovian and deterministic sampling process, where the
transition distribution is conditioned not only on the previous
timestep but also on the original clean data, expressed
as P(xt |xt−1,x0). This formulation enables a reduction in
both forward and reverse time steps. While this approach
eliminates the stochasticity inherent in standard diffusion
models—removing randomness from the generation pro-
cess—it remains well-suited for our application in this paper.
However, the advantages of using DDIM over DDPM for
policy learning require further investigation, as it may reduce
diversity in sampling trajectories. In our previous work, we
used 100 diffusion iterations with DDPM. In this work,
we use 50 iterations for training and an adaptive denoising
parameter with DDIM, ranging from 10 to 50.
C. Overview of Approach
To inform the diffusion policy of Tp and the Ts at each time
step, we introduce a hierarchical structure. Specifically, in the
connector disassembly task, the robot must handle various
classes of connectors, each requiring distinct manipulation
strategies. Within each class, the task can be further decom-
posed into sub-task modes such as approach, grasp, unlock,
and pull, as illustrated in Figure 2.

As done in [15], we consider n observation frames for



conditioning the policy. We also use 16 action prediction
horizon, Ta, and define an adaptive execution horizon, Te,
which is dependent on the current sub-task as described in
Section IV-B. In our framework, the robot starts from an
initial position and executes a sequence of tasks to achieve
the overarching goal of disconnecting the connector. In this
work, we focus on improving policy execution efficiency by
incorporating additional task context and adaptively adjusting
key model parameters to better suit the task requirements.

In a standard policy learning framework, mode transitions
occur implicitly, meaning the robot switches from approach
to grasp based solely on differences in image or force fea-
tures. However, such implicit mode switches are inefficient,
as image features exhibit only minor variations once the
gripper is close to the object. The bottleneck makes it difficult
for the model to precisely determine when a constraint (e.g.,
a pre-grasp pose) has been met before closing the gripper.
We hypothesize that explicitly informing the model of sub-
tasks as discrete states will improve performance in terms of
success rate, data efficiency, and inference speed.

We use language as a tool to provide task context across
different connector types and mode switches during task exe-
cution. The details of our language-conditioning mechanism
are described in Section IV-A. Additionally, incorporating
a hierarchical structure into the diffusion policy allows us
to tune key design parameters, such as Te and the number
of denoising steps, as detailed in Section IV-B. Finally,
to effectively weigh the importance of different sensory
modalities, we introduce an importance weighing function
within the Feature-wise Linear Modulation (FiLM) [42]
conditioning mechanism, which is discussed in Section IV-C
. An overview of our approach is outlined in Figure 3.

IV. METHODOLOGY
A. Using Language to Provide Task-Context for Policy

Learning
We observe that when training a Diffusion Policy without ex-
plicit labels for different object classes, the robot struggles to
perform any specific tasks. We hypothesize that this is due to
the high ambiguity in the observation space—where the same
visual and force observations correspond to multiple possible
action sequences—causing confusion during inference.

Diffusion policy is known to commit to a single trajectory
when presented with multiple options, a limitation often
associated with multimodality [15]. Consequently, when
trained on multiple tasks, we expected it to randomly commit
to a single task. However, our experiments showed that,
while a model trained on a single-task dataset for the same
number of iterations performs the task reasonably well,
performance degrades as more tasks are introduced into a
single model. By the time the model is trained on four
tasks, the robot struggles to commit to any specific task,
often exhibiting idle motion instead of executing meaningful
actions. This suggests that, without explicit task labels, the
model faces difficulty distinguishing between different task
modes, ultimately resulting in mode collapse.

To address this issue, we introduce language-based task
labels to condition the model on the specific task mode the

robot is executing. We flatten Tp and Ts into a language
command during execution. For instance, when the robot
is performing an approach sub-task for the USB, we use
a natural language command such as ”Approach USB” to
guide the model. These commands can come from either hu-
man instructions or an autonomous classifier, as discussed in
Section VI. To encode the text input, we leverage a CLIP text
encoder, which generates a task-specific embedding. This
embedding is then concatenated with the robot’s observation
space, which includes two camera-view image observations
and force data, to condition the policy.

We use CLIP as our text encoder due to its proven effec-
tiveness in Vision-Language Models (VLMs). There has been
previous work that has used CLIP encoders for text encoding
for policy learning [38]. CLIP encoders are designed to learn
robust, semantically meaningful embeddings that align text
and image representations in a shared latent space. This
capability makes CLIP particularly well-suited for our task,
where the robot needs to differentiate between various task
modes and object classes based on language inputs.

Additionally, in this work, we constrain the vocabulary
used to describe tasks to a predefined set of commands
relevant to manufacturing disassembly. However, since CLIP
is a general-purpose text encoder, our approach has the
potential to scale to a more diverse set of tasks and sub-tasks,
enabling robots to perform a broader range of operations in
complex manufacturing environments.

B. Adaptive Parameter Selection
In previous work, hyperparameters such as Te and the number
of diffusion steps, t, are fixed throughout both training
and inference. However, to optimize execution time and
improve precision, it is beneficial to dynamically select these
parameters based on the requirements of each sub-tasks, Tp
and Ts. For example, closing the gripper does not require
high precision when committing to a task, allowing for
more aggressive predictions. In contrast, when the gripper
approaches the object, fine adjustments in its pose are crucial
to grasp success. Given these characteristics, the number of
denoising steps can be reduced to decrease latency during
action prediction. However, for tasks requiring greater pre-
cision, these hyperparameters need to be more conservative.
Therefore, we select more denoising steps to obtain more
precise actions for such tasks.

C. Importance Weighting Function for Different Sensory
Modalities

Diffusion models often employ FiLM conditioning within
a U-net architecture to integrate information from vari-
ous sensory modalities. In these models, FiLM generates
channel-wise scaling (γi,c) and shifting (βi,c) parameters
using functions f and h. These functions take as input a con-
catenation of observation modalities—such as images, force
measurements, and proprioception—along with a positional
embedding for the diffusion time step.

When performing contact-rich tasks, humans typically rely
more on vision to guide their hand toward the object of
interest. Once the object is grasped, they shift their reliance



Fig. 3: Our framework utilizes text input for hierarchical task selection. The text description is processed through a CLIP-text encoder
to generate text embeddings. For visual inputs, we employ two camera views and extract features using a pretrained ResNet34 [41].
Additionally, we incorporate 6D force data (force and torque), which is fed into a separate FiLM module to learn modulating parameters,
as discussed in Section IV-C. This enables adaptive reliance on different sensor modalities based on the current Ts the robot is performing.
Finally, the noise prediction network denoises the action sequence at using the previous n observations, following [15].

to force and tactile modalities. Inspired by this trait, we
introduce a sensory modality weight matrix in the FiLM
architecture that dynamically adjusts the reliance on each
sensory modality based on Ts. Specifically, we define γ ′i,c
and a shifting term β ′

i,c formulated as follows:

γ
′
i,c = wimageαimage +w f orceα f orce

β
′
i,c = wimageβimage +w f orceβ f orce

(6)

where wimage +w f orce = 1. We use parameters w f orce of
0.3 for the Ts that requires less precision, and w f orce of 0.6
once the robot has grasped the object for better force-based
guidance.

V. EXPERIMENTS
A. Hardware Setup
We test our method on KUKA LBR IIWA14 arm with
hardware setup shown in Figure 4. We choose the NIST
task board #1 as the testbed that is representative of the
electronics disassembly problem motivated in Figure 1. We
have a BNC, Terminal block , D-sub, and USB connector
in one scene (See Figure 3) to show that our method can
multiple tasks efficiently while maintaining a single model.
Additionally, these tasks require long horizon multi-step
planning, which requires mode switching between sub-tasks.

B. Data Collection
For data collection, we use kinesthetic teaching. While
teleoperation is a popular method for human demonstration,
we find that it requires more time to collect demonstra-
tions and has a greater tendency to introduce idle time

Fig. 4: Hardware Setup: Our robotic arm performs multiple tasks
on the NIST task board. We utilize two wrist-mounted cameras: one
providing a front view to monitor the gripper state and the board,
and another offering a side view to assist with gripper and object
alignment for successful grasping.

in demonstrations, which adds sub-optimality to the data.
Additionally, it poses challenges when the tasks require high
precision. During kinesthetic teaching, we record trajectory
data. One issue with kinesthetic teaching is that during
trajectory data collection, the human may be included in the
scene. Therefore, once we collect trajectory data, we play
back the trajectory data and collect two wrist camera RGB
images, force, and proprioception.

Once we have the collected data, we label the trajectory
data with language instructions by segment consisting of the



Fig. 5: Different connectors used in our experiment. Each connector
requires a distinct unlocking mechanism: a wiggling motion for D-
sub connectors, rotation for BNC connectors, and varying force
levels for pulling out USB and Terminal block connectors.

hierarchical structure of the parent tasks and the sub-tasks as
described in Figure 2. It is important to note that although
we manually label all sub-task segments in the trajectories,
there are many prior works on temporal action segmentation
that can be incorporated for easy labeling [43].

C. Training
Our training data consists of 15 data points each except
for the BNC connector, which includes 20 episodes of
demonstration. Each demonstration consists of full trajectory
from approaching the connector to pulling out the connector.
We use delta action representation for our method and 6-
D rotation representation for continuous representation for
better interpretability in neural networks [44].

During inference, however, we use relative action repre-
sentation with respect to the current pose of the robot similar
to method shown in [16]. We find that this improves the
smoothness of the robot trajectory, as delta action has to stop
and calculate next action with respect to the current step.

We train our policy end-to-end with CLIP and two pre-
trained resnet34 encoder on ImageNet Data and finetune the
model with our own data as shown in Figure 3. For our resnet
backbone, we replace Batch Normalization with Group Nor-
malization. We use batch size of 64 with learning rate of
1×10−4 and weight decay of 1×10−3. We use Exponential
Moving Average (EMA) during training recommended for
diffusion model training. We train our model on NVIDIA
RTX 4080 GPU for 12 hours.

VI. RESULTS

A. End-to-end Success-rate Comparison
To evaluate how each component of our proposed method
contributes to performance, we benchmark against the fol-
lowing variants:

1) DP-S (Single skill Diffusion Policy) : Diffusion policy
trained on single skill

2) DP-M (Diffusion Policy with Language Instruction):
Diffusion policy with task labels in language

3) DP-M-AM (Multi-task Diffusion Policy with Adap-
tive Modality Weighing): A diffusion policy incorpo-
rating language-based task instructions and the adap-
tive modality weighing method described in Section
IV-C.

Because the baseline diffusion policy (DP-B) trained in
four different skills without language instructions cannot
perform any tasks, we consider the success rate as 0% for
all types of tasks and do not include it as the benchmark

Fig. 6: Comparison of Robot Execution Time: We compare the
time taken for two different models: DP-S and DP-M-AM(Ours).
We see that our method reduces execution time significantly.

method. However, we include DP-S trained on a single task
each and compare the success rate with our methods. In
this experiment, human-provided task commands are used
to guide the robot policy for DP-M and DP-M-AM models.

We repeat the experiment for 20 times per connector type.
We define success as the robot approaching the connector and
fully removing the connection end-to-end. Especially for the
multi-task policies, we include being able to select the right
parent task, Tp in the policy as success and consider it as a
failure if the robot initiates a different task compared to the
language instruction.

D-Sub USB BNC Terminal Avg.

DP-S 0.80 0.75 0.65 0.80 0.76
DP-M 1.00 0.95 0.70 0.85 0.88
DP-M-AM 1.00 1.00 0.85 0.95 0.95

TABLE I: Success Rate Comparison: We compare the success
rates of three different benchmark methods, as presented in Section
VI-B. Our results show that incorporating adaptive sensor modality
reliance at different sub-tasks improves performance. Among the
connectors, the BNC connector presents the longest-horizon task
and is the most challenging due to its higher reliance on contact
states and small size, which causes the model to struggle the most.
B. Comparison in Time Taken End-to-end
To demonstrate that our method can effectively reduce the
time required for the task, we compare the time taken
for each task. We compare our method against a single
diffusion policy without language labels trained separately on
individual tasks to showcase that our method can efficiently
change the modes compared to the regular policy learning
framework. We run our experiment on four different con-
nector types listed in Figure 5 twenty times and report the
average time taken in Figure 6.

We find that our method reduces the time taken by 57%
over all. Next section describes how much of this gain comes
from the mode switch.
Failure Mode Analysis In the baseline methods without
language labels, distinct failure modes arise. In particular,
the most frequent errors occur during grasping. Without
language instructions, models struggle to differentiate subtle
differences in the pre-grasp pose and approach when relying
solely on visual features. This problem is especially evident



Fig. 7: Comparison of Time Taken for Mode Change: We analyze
the contribution of mode change to overall efficiency. Our approach
achieves significantly faster mode transitions compared to DP-S.

with smaller objects, such as the BNC connector, which is
significantly smaller than other connectors. Consequently, the
model attempts a premature grasp or lowers the gripper too
far, causing it to inadvertently contact the board.

C. Comparison in Time Taken for Mode Switch

In this section, we quantify how much of the time improve-
ment from Section VI-B is attributed to mode switches.
We observe that language instructions can trigger an almost
instantaneous mode switch, as the robot transitions modes
immediately upon receiving an instruction. Figure 7 presents
our findings. On average, our approach achieves a 6.7 sec-
onds per mode switch reduction in time and overall attributes
49% of the time saved during execution.

D. Incorporating Mode-Switch Classification

In the previous experiments, we manually provided the
policy with task-context input to indicate mode switches.
However, when deployed in a manufacturing setting, an
autonomous mechanism will be necessary to detect mode
switches. To enable this, we investigate a classification-based
approach that identifies sub-task transitions without human
intervention. Specifically, we introduce a boundary classifier
that determines whether the robot has reached the end of a
sub-task, indicating to the policy to transition to the next task
accordingly.

This framework detects boundaries based on the last n
observations. Specifically, we reuse the observation feature
embedding architecture from the proposed policy frame-
work and extend it with a classification head for binary
boundary detection. The classifier is trained on the same
trajectory dataset used for the diffusion policy and achieves
a classification accuracy of 97%. Notably, misclassifications
occur, on average, just 1.2±0.82 time steps away from the
actual boundary, highlighting that the incorrect predictions
are temporally close to true transitions.

While not the primary focus of our study, these findings
suggest that our framework can operate autonomously by
leveraging learned task context to enhance efficiency and
robustness. Future work will further explore this direction
to strengthen its applicability in fully autonomous scenarios.

E. Case Study
To demonstrate our architecture’s capability for language-
based interaction in collaborative manufacturing, we conduct
a case study where a robot performs a sequence of assembly
tasks based on human-specified language inputs. Inspired
by practical scenarios involving electronic assemblies re-
quiring diagnostics, we simulated examples of human task
preferences to guide the robot’s execution sequence. For our
experiments, we employed the NIST task board due to its
realistic representation of real-world electronic assemblies
in terms of connector types and spatial layout. During the
case study, the robot executed each task based on a provided
language command, followed by manually dropping the
connector, resetting to a home position, and receiving the
next task instruction.
Case Study 1: The robot performed the following sequence
of tasks specified by the human starting with unplugging a
BNC connector, followed by disconnecting a D-sub connec-
tor, and finally a USB connector. The total execution time
for this task sequence was 71 seconds.
Case Study 2: The robot executed another human-specified
sequence, beginning with disconnecting a USB connector,
followed by a D-sub connector, and concluding with a
Terminal block. This sequence was completed in 36 seconds.

VII. CONCLUSION

In this paper, we extend the diffusion policy framework by
incorporating task context, enhancing both robustness and
efficiency in task execution while enabling human operators
to specify tasks through natural language commands. Our
framework improves success rates and accelerates task exe-
cution, making it well-suited for manufacturing-related ap-
plications. Experimental results demonstrate that our method
reduces execution time by 57% and increases success rates
by 19% compared to benchmark methods. Additionally, we
present case studies illustrating the feasibility of our system,
where a human operator commands the robot to execute a
sequence of tasks, which the robot performs sequentially. In
future work, we aim to extend our framework to more com-
plex assembly and disassembly tasks and further investigate
its scalability. Additionally, we plan to develop a more robust
classifier with out-of-distribution detection to recover from
boundary prediction errors automatically which can be train
in conjunction with the diffusion policy.
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